Guide to Computer Forensics and Investigations Fourth Edition

Chapter 4 Data Acquisition

Objectives

- List digital evidence storage formats
- Explain ways to determine the best acquisition method
- Describe contingency planning for data acquisitions
- Explain how to use acquisition tools

Objectives (continued)

- Explain how to validate data acquisitions
- Describe RAID acquisition methods
- Explain how to use remote network acquisition tools
- List other forensic tools available for data acquisitions

Understanding Storage Formats for Digital Evidence

- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

Raw Format

- Makes it possible to write bit-stream data to files
- Advantages
 - Fast data transfers
 - Can ignore minor data read errors on source drive
 - Most computer forensics tools can read raw format
- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors

Proprietary Formats

- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Can integrate metadata into the image file
- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume

Advanced Forensics Format

- Developed by Dr. Simson L. Garfinkel of Basis Technology Corporation
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files
 - Provide space in the image file or segmented files for metadata
 - Simple design with extensibility
 - Open source for multiple platforms and OSs

Advanced Forensics Format (continued)

- Design goals (continued)
 - Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source

Determining the Best Acquisition Method

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods
 - Bit-stream disk-to-image file
 - Bit-stream disk-to-disk
 - Logical disk-to-disk or disk-to-disk data
 - Sparse data copy of a file or folder

Determining the Best Acquisition Method (continued)

- Bit-stream disk-to-image file
 - Most common method
 - Can make more than one copy
 - Copies are bit-for-bit replications of the original drive
 - ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLook
- Bit-stream disk-to-disk
 - When disk-to-image copy is not possible
 - Consider disk's geometry configuration
 - EnCase, SafeBack, SnapCopy

Determining the Best Acquisition Method (continued)

Logical acquisition or sparse acquisition

- When your time is limited
- Logical acquisition captures only specific files of interest to the case
- Sparse acquisition also collects fragments of unallocated (deleted) data
- For large disks
- PST or OST mail files, RAID servers

Determining the Best Acquisition Method (continued)

- When making a copy, consider:
 - Size of the source disk
 - Lossless compression might be useful
 - Use digital signatures for verification
 - When working with large drives, an alternative is using tape backup systems
 - Whether you can retain the disk

Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
 - Whole disk encryption feature in Windows Vista
 Ultimate and Enterprise editions

Using Acquisition Tools

- Acquisition tools for Windows
 - Advantages
 - Make acquiring evidence from a suspect drive more convenient
 - Especially when used with hot-swappable devices
 - Disadvantages
 - Must protect acquired data with a well-tested writeblocking hardware device
 - Tools can't acquire data from a disk's host protected area

Windows XP Write-Protection with USB Devices

- USB write-protection feature
 - Blocks any writing to USB devices
- Target drive needs to be connected to an internal PATA (IDE), SATA, or SCSI controller
- Steps to update the Registry for Windows XP SP2
 - Back up the Registry
 - Modify the Registry with the write-protection feature
 - Create two desktop icons to automate switching between enabling and disabling writes to USB device

Windows XP Write-Protection with USB Devices (continued)

Figure 4-2 The System Restore Wizard

Acquiring Data with a Linux Boot CD

- Linux can access a drive that isn't mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don't access media automatically
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additionally utilities

- Using Linux Live CD Distributions (continued)
 - Forensic Linux Live CDs (continued)
 - Configured not to mount, or to mount as read-only, any connected storage media
 - Well-designed Linux Live CDs for computer forensics
 - Helix
 - Penguin Sleuth
 - FCCU
- Preparing a target drive for acquisition in Linux
 - Linux distributions can create Microsoft FAT and NTFS partition tables

- Preparing a target drive for acquisition in Linux (continued)
 - fdisk command lists, creates, deletes, and verifies partitions in Linux
 - mkfs.msdos command formats a FAT file system from Linux
- Acquiring data with dd in Linux
 - dd ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read

- Acquiring data with dd in Linux (continued)
 - Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
 - dd command combined with the split command
 - Segments output into separate volumes
- Acquiring data with dcfldd in Linux
 - dd command is intended as a data management tool
 - Not designed for forensics acquisitions

- Acquiring data with dcfldd in Linux (continued)
 - dcfldd additional functions
 - Specify hex patterns or text for clearing disk space
 - Log errors to an output file for analysis and review
 - Use several hashing options
 - Refer to a status display indicating the progress of the acquisition in bytes
 - Split data acquisitions into segmented volumes with numeric extensions
 - Verify acquired data with original disk or media data

Capturing an Image with ProDiscover Basic

- Connecting the suspect's drive to your workstation
 - Document the chain of evidence for the drive
 - Remove the drive from the suspect's computer
 - Configure the suspect drive's jumpers as needed
 - Connect the suspect drive
 - Create a storage folder on the target drive
- Using ProDiscover's Proprietary Acquisition Format
 - Image file will be split into segments of 650MB
 - Creates image files with an .eve extension, a log file (.log extension), and a special inventory file (.pds extension)

Capturing an Image with ProDiscover Basic (continued)

Split Image	×
Size of the disk: 1667232 sectors (814.08 MB)	-
Split into equal sized image of 650 MB Split	J
Define the file sizes:	
Image Size (MB) Size (Sectors)	
1 650.00 1331200 2 164.08 336032	
- Image Information	
Image Number: 0	
Image Size (MB): 0	
Image Size (Sectors): 0	
Update	
OK. Cencel	

Capture Image	×
Source Drive	PhysicaDrive1
Destination:	C:\Work\InChp04p.eve >> Split
Image Format:	ProDiscover Format (recommended)
Total sectors to capture :	1667232 HR/.
ProDiscover Image Technician Name: Joe Image Number InO Description : In Chapter 4 exercise usi	p04 ng ProDiscover Basic
Compression C Yes C No	Password
[OK Cancel

Figure 4-5 The Capture Image dialog box

Capturing an Image with ProDiscover Basic (continued)

- Using ProDiscover's Raw Acquisition Format
 - Select the UNIX style dd format in the Image Format list box
 - Raw acquisition saves only the image data and hash value

Capturing an Image with AccessData FTK Imager

- Included on AccessData Forensic Toolkit
- View evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware writeblocking device
 - Or the USB write-protection Registry feature enabled
- FTK Imager can't acquire drive's host protected area

Figure 4-6 The FTK Imager main window

• Steps

- Boot to Windows
- Connect evidence disk to a write-blocker
- Connect target disk to write-blocker
- Start FTK Imager
- Create Disk Image
 - Use Physical Drive option

Figure 4-7 The Select Source dialog box

Please Select th	e Destination I	таря Туре	
🖲 Raw (do	0		
C SMART			
C EOL			

Figure 4-8 The Select Image Type dialog box

Select Image Destination	X
Image destination folder	
C:\Work	
Browse	
Image filename (excluding extension)	
InChp04-ftk	
Image fragment size (MB) 650	
< Back Finish Cancel Help	

Figure 4-9 Selecting where to save the image file

Creating Image	e [100%]				
Image Source:	\\.\PHYSICALORIVE1				
Destination:	C: \Work(InChp04-ftk				
Statusi	Image created successfully				
Progress	124.00 of 12	1.00 MB (0.849 MB/sec			
Elapsed time:		0:02:26			
Est	timated time left:	0:00:00			
Image Summa	ry	Close			

Figure 4-10 A completed image save

Validating Data Acquisitions

- Most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques

- CRC-32, MD5, and SHA-1 to SHA-512

Linux Validation Methods

- Validating dd acquired data
 - You can use md5sum or sha1sum utilities
 - md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes
- Validating dcfldd acquired data
 - Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 - hashlog option outputs hash results to a text file that can be stored with the image files
 - vf (verify file) option compares the image file to the original medium

Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don't contain metadata
 - Separate manual validation is recommended for all raw acquisitions

Performing RAID Data Acquisitions

- Size is the biggest concern
 - Many RAID systems now have terabytes of data

Understanding RAID

- Redundant array of independent (formerly "inexpensive") disks (RAID)
 - Computer configuration involving two or more disks
 - Originally developed as a data-redundancy measure
- RAID 0
 - Provides rapid access and increased storage
 - Lack of redundancy
- RAID 1
 - Designed for data recovery
 - More expensive than RAID 0

- RAID 2
 - Similar to RAID 1
 - Data is written to a disk on a bit level
 - Has better data integrity checking than RAID 0
 - Slower than RAID 0
- RAID 3
 - Uses data stripping and dedicated parity
- RAID 4
 - Data is written in blocks

Figure 4-11 RAID 0: Striping

Figure 4-12 RAID 1: Mirroring

Figure 4-13 RAID 2: Striping (bit level)

- RAID 5
 - Similar to RAIDs 0 and 3
 - Places parity recovery data on each disk
- RAID 6
 - Redundant parity on each disk
- RAID 10, or mirrored striping
 - Also known as RAID 1+0
 - Combination of RAID 1 and RAID 0

Figure 4-14 RAID 5: Block-level striping with distributed parity

Acquiring RAID Disks

Concerns

- How much data storage is needed?
- What type of RAID is used?
- Do you have the right acquisition tool?
- Can the tool read a forensically copied RAID image?
- Can the tool read split data saves of each RAID disk?
- Older hardware-firmware RAID systems can be a challenge when you're making an image

Acquiring RAID Disks (continued)

- Vendors offering RAID acquisition functions
 - Technologies Pathways ProDiscover
 - Guidance Software EnCase
 - X-Ways Forensics
 - Runtime Software
 - R-Tools Technologies
- Occasionally, a RAID system is too large for a static acquisition
 - Retrieve only the data relevant to the investigation with the sparse or logical acquisition method

Using Remote Network Acquisition Tools

- You can remotely connect to a suspect computer via a network connection and copy data from it
- Remote acquisition tools vary in configurations and capabilities
- Drawbacks
 - LAN's data transfer speeds and routing table conflicts could cause problems
 - Gaining the permissions needed to access more secure subnets
 - Heavy traffic could cause delays and errors

Remote Acquisition with ProDiscover

- With ProDiscover Investigator you can:
 - Preview a suspect's drive remotely while it's in use
 - Perform a live acquisition
 - Encrypt the connection
 - Copy the suspect computer's RAM
 - Use the optional stealth mode
- ProDiscover Incident Response additional functions
 - Capture volatile system state information
 - Analyze current running processes

Remote Acquisition with ProDiscover (continued)

- ProDiscover Incident Response additional functions (continued)
 - Locate unseen files and processes
 - Remotely view and listen to IP ports
 - Run hash comparisons
 - Create a hash inventory of all files remotely
- PDServer remote agent
 - ProDiscover utility for remote access
 - Needs to be loaded on the suspect

Remote Acquisition with ProDiscover (continued)

- PDServer installation modes
 - Trusted CD
 - Preinstallation
 - Pushing out and running remotely
- PDServer can run in a stealth mode
 - Can change process name to appear as OS function

Remote Acquisition with ProDiscover (continued)

- Remote connection security features
 - Password Protection
 - Encryption
 - Secure Communication Protocol
 - Write Protected Trusted Binaries
 - Digital Signatures

Remote Acquisition with EnCase Enterprise

- Remote acquisition features
 - Remote data acquisition of a computer's media and RAM data
 - Integration with intrusion detection system (IDS) tools
 - Options to create an image of data from one or more systems
 - Preview of systems
 - A wide range of file system formats
 - RAID support for both hardware and software

Remote Acquisition with R-Tools R-Studio

- R-Tools suite of software is designed for data recovery
- Remote connection uses Triple Data Encryption Standard (3DES) encryption
- Creates raw format acquisitions
- Supports various file systems

Remote Acquisition with Runtime Software

- Utilities
 - DiskExplorer for FAT
 - DiskExplorer for NTFS
 - HDHOST
- Features for acquisition
 - Create a raw format image file
 - Segment the raw format or compressed image
 - Access network computers' drives

Using Other Forensics-Acquisition Tools

- Tools
 - SnapBack DatArrest
 - SafeBack
 - DIBS USA RAID
 - ILook Investigator IXimager
 - Vogon International SDi32
 - ASRData SMART
 - Australian Department of Defence PyFlag

SnapBack DatArrest

- Columbia Data Products
- Old MS-DOS tool
- Can make an image on three ways
 - Disk to SCSI drive
 - Disk to network drive
 - Disk to disk
- Fits on a forensic boot floppy
- SnapCopy adjusts disk geometry

NTI SafeBack

- Reliable MS-DOS tool
- Small enough to fit on a forensic boot floppy
- Performs an SHA-256 calculation per sector copied
- Creates a log file

NTI SafeBack (continued)

- Functions
 - Disk-to-image copy (image can be on tape)
 - Disk-to-disk copy (adjusts target geometry)
 - Parallel port laplink can be used
 - Copies a partition to an image file
 - Compresses image files

DIBS USA RAID

- Rapid Action Imaging Device (RAID)
 - Makes forensically sound disk copies
 - Portable computer system designed to make disk-todisk images
 - Copied disk can then be attached to a write-blocker device

ILook Investigator IXimager

- Iximager
 - Runs from a bootable floppy or CD
 - Designed to work only with ILook Investigator
 - Can acquire single drives and RAID drives

Vogon International SDi32

- Creates a raw format image of a drive
- Write-blocker is needed when using this tool
- Password Cracker POD
 - Device that removes the password on a drive's firmware card

ASRData SMART

- Linux forensics analysis tool that can make image files of a suspect drive
- Capabilities
 - Robust data reading of bad sectors on drives
 - Mounting suspect drives in write-protected mode
 - Mounting target drives in read/write mode
 - Optional compression schemes

Australian Department of Defence PyFlag

- PyFlag tool
 - Intended as a network forensics analysis tool
 - Can create proprietary format Expert Witness image files
 - Uses sgzip and gzip in Linux

Summary

- Data acquisition methods
 - Disk-to-image file
 - Disk-to-disk copy
 - Logical disk-to-disk or disk-to-data file
 - Sparse data copy
- Several tools available
 - Lossless compression is acceptable
- Plan your digital evidence contingencies
- Write-blocking devices or utilities must be used with GUI acquisition tools

Summary (continued)

- Always validate acquisition
- A Linux Live CD, such as Helix, provides many useful tools for computer forensics acquisitions
- Preferred Linux acquisition tool is dcfldd (not dd)
- Use a physical write-blocker device for acquisitions
- To acquire RAID disks, determine the type of RAID

And then which acquisition tool to use