
NoSQL

CPSC 4670/5670

NoSQL

• What does it mean?
– Not Only SQL.

Use Cases

• Massive write performance.
• Fast key value look ups.
• Flexible schema and data types.
• No single point of failure.
• Fast prototyping and development.
• Out of the box scalability.
• Easy maintenance.

Motives Behind NoSQL
• Big data.
– Collect.
– Store.
– Organize.
– Analyze.
– Share

• Scalability.
– Data growth outruns the ability to manage it so we

need scalable solutions.
• Data format.
• Manageability.

Scalability

• Scale up, Vertical scalability.
– Increasing server capacity.
– Adding more CPU, RAM.
– Managing is hard.
– Possible down times

Scalability
• Scale out, Horizontal scalability.

– Adding servers to existing system with little effort, aka
Elastically scalable.
• Bugs, hardware errors, things fail all the time.
• It should become cheaper. Cost efficiency.

– Shared nothing.
– Use of commodity/cheap hardware.
– Heterogeneous systems.
– Controlled Concurrency (avoid locks).
– Service Oriented Architecture. Local states.

• Decentralized to reduce bottlenecks.
• Avoid Single point of failures.

– Asynchrony.
– Symmetry, you don’t have to know what is happening. All

nodes should be symmetric.

What is Wrong With RDBMS?
• Nothing. One size fits all? Not really.
• Impedance mismatch.

– Object Relational Mapping doesn't work quite well.
• Rigid schema design.
• Harder to scale.
• Replication.
• Joins across multiple nodes? Hard.
• How does RDMS handle data growth? Hard.
• Need for a DBA.
• Many programmers are already familiar with it.
• Transactions and ACID make development easy.
• Lots of tools to use.

ACID Semantics
• Atomicity: All or nothing.
• Consistency: Consistent state of data and transactions.
• Isolation: Transactions are isolated from each other.
• Durability: When the transaction is committed, state

will be durable.

Any data store can achieve Atomicity, Isolation and
Durability but do you always need consistency? No.

By giving up ACID properties, one can achieve higher
performance and scalability.

Brewer’s CAP Theorem

A distributed system can support only two of the
following characteristics:
• Consistency
• Availability
• Partition tolerance
• Proven by Nancy Lynch et al. MIT labs.

• http://www.cs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf

7 April 2021 9

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

Consistency

• Consistency: Clients should read the same
data. There are many levels of consistency.
– Strict Consistency – RDBMS.
– Tunable Consistency – Cassandra.
– Eventual Consistency – Amazon Dynamo.

• client perceives that a set of operations has
occurred all at once – Pritchett

• More like Atomic in ACID transaction
properties

7 April 2021 10

Availability

– Availability: Data to be available.
– node failures do not prevent survivors from

continuing to operate – Wikipedia
– Every operation must terminate in an intended

response – Pritchett

7 April 2021 11

Partition Tolerance

– Partial Tolerance: Data to be partitioned
across network segments due to network
failures.

– the system continues to operate despite
arbitrary message loss – Wikipedia

– Operations will complete, even if individual
components are unavailable – Pritchett

7 April 2021 12

BASE, an ACID Alternative

Almost the opposite of ACID.
• Basically available: Nodes in the a distributed

environment can go down, but the whole
system shouldn’t be affected.

• Soft State (scalable): The state of the system
and data changes over time.

• Eventual Consistency: Given enough time,
data will be consistent across the distributed
system.

A Clash of cultures
ACID:
• Strong consistency.
• Less availability.
• Pessimistic concurrency.
• Complex.
BASE:
• Availability is the most important thing. Willing to

sacrifice for this (CAP).
• Weaker consistency (Eventual).
• Best effort.
• Simple and fast.
• Optimistic.

NoSQL Database Types

Discussing NoSQL databases is complicated
because there are a variety of types:
• Key-Value Store – Hash table of keys
• Column Store – Each storage block contains

data from only one column
• Document Store – stores documents made up

of tagged elements
• Graph Databases

7 April 2021 15

Other Non-SQL Databases

• XML Databases
• Codasyl Databases
• Object Oriented Databases
• Etc…
• Will not address these today

7 April 2021 16

Complexity

NoSQL Examples: Key-Value Store

• Hash tables of Keys
• Values stored with Keys
• Fast access to small data values
• Example – Project-Voldemort
– http://www.project-voldemort.com/
– Linkedin

• Example – MemCacheDB
– http://memcachedb.org/
– Backend storage is Berkeley-DB

7 April 2021 18

http://www.project-voldemort.com/
http://memcachedb.org/

NoSQL Examples: Map Reduce

• Technique for indexing and searching large
data volumes

• Two Phases, Map and Reduce
– Map
• Extract sets of Key-Value pairs from underlying data
• Potentially in Parallel on multiple machines

– Reduce
• Merge and sort sets of Key-Value pairs
• Results may be useful for other searches

7 April 2021 19

Map/Reduce
• map(key, val) is run on each item in set
– emits new-key / new-val pairs

• reduce(key, vals) is run for each unique key
emitted by map()
– emits final output

MapReduce Examples: count words in
docs

– Input consists of (url, contents) pairs

– map(key=url, val=contents):
• For each word w in contents, emit (w, “1”)

– reduce(key=word, values=uniq_counts):
• Sum all “1”s in values list
• Emit result “(word, sum)”

Count,
Illustrated

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

MapReduce Example: Grep

– Input consists of (url+offset, single line)
– map(key=url+offset, val=line):
• If contents matches regexp, emit (line, “1”)

– reduce(key=line, values=uniq_counts):
• Don’t do anything; just emit line

Map Reduce

• Map Reduce techniques differ across products
• Implemented by application developers, not

by underlying software

7 April 2021 24

NoSQL Example: Document Store

• Schema Free.
• Usually JSON like

interchange model.
• Query Model:

JavaScript or custom.
• Aggregations:

Map/Reduce.
• Indexes are done via

B-Trees.

7 April 2021 25

• Example: CouchDB
• http://couchdb.apache.org/
• BBC

• Example: MongoDB
• http://www.mongodb.org/
• Foursquare, Shutterfly

• JSON – JavaScript Object
Notation

http://couchdb.apache.org/
http://www.mongodb.org/

CouchDB JSON Example
{

"_id": "guid goes here",
"_rev": "314159",

"type": "abstract",

"author": "Keith W. Hare"

"title": "SQL Standard and NoSQL Databases",

"body": "NoSQL databases (either no-SQL or Not Only SQL)
are currently a hot topic in some parts of
computing.",

"creation_timestamp": "2011/05/10 13:30:00 +0004"
}

7 April 2021 26

CouchDB JSON Tags

• "_id"
– GUID – Global Unique Identifier
– Passed in or generated by CouchDB

• "_rev"
– Revision number
– Versioning mechanism

• "type", "author", "title", etc.
– Arbitrary tags
– Schema-less
– Could be validated after the fact by user-written

routine

7 April 2021 27

Mongodb
• Data types: bool, int, double, string, object(bson), oid,

array, null, date.
• Database and collections are created automatically.
• Lots of Language Drivers.
• Capped collections are fixed size collections, buffers,

very fast, FIFO, good for logs. No indexes.
• Object id are generated by client, 12 bytes packed

data. 4 byte time, 3 byte machine, 2 byte pid, 3 byte
counter.

• Possible to refer other documents in different
collections but more efficient to embed documents.

• Replication is very easy to setup. You can read from
slaves.

Mongodb
• Supports aggregation.

– Map Reduce with JavaScript.
• You have indexes, B-Trees. Ids are always indexed.
• Updates are atomic. Low contention locks.
• Querying mongo done with a document:

– Lazy, returns a cursor.
– Reduceable to SQL, select, insert, update limit, sort etc.

• There is more: upsert (either inserts of updates)
– Several operators:

• $ne, $and, $or, $lt, $gt, $incr,$decr and so on.

• Repository Pattern makes development very easy.

Mongodb - Sharding

Config servers: Keeps mapping
Mongos: Routing servers
Mongod: master-slave replicas

Graph Stores

• Based on Graph Theory.
• Scale vertically, no clustering.
• You can use graph algorithms easily.

Graph Stores -- Neo4J

• Nodes, Relationship.
• Traversals.
• HTTP/REST.
• ACID.
• Web Admin.
• Not too much support for languages.
• Has transactions.

NoSQL Summary

• NoSQL databases reject:
– Overhead of ACID transactions
– “Complexity” of SQL
– Burden of up-front schema design
– Declarative query expression
– Yesterday’s technology

• Programmer responsible for
– Step-by-step procedural language
– Navigating access path

7 April 2021 33

Summary

• SQL Databases
– Predefined Schema
– Standard definition and interface language
– Tight consistency
– Well defined semantics

• NoSQL Database
– No predefined Schema
– Per-product definition and interface language
– Getting an answer quickly is more important than

getting a correct answer

7 April 2021 34

7 April 2021 35

