Watermarking Relational Databases

Acknowledgement: Mohamed Shehab from Purdue Univ.

Outline

- Introductory Material
- General Watermarking Model & Attacks
- WM Technique 1 (Agrawal et al.)
- WM Technique 2 (Sion et al.)
- Future Challenges and References

What is Watermarking ?

- A "watermark" is a signal that is securely, imperceptibly, and "robustly" embedded into original content such as an image, video, or audio signal, producing a watermarked signal.
- The watermark describes information that can be used for proof of ownership or tamper proofing.

What is Watermarking ? (Cont.)

- Robust Watermark: for proof of ownership, copyrights protection.
- Fragile Watermark: for tamper proofing, data integrity.

Why Watermarking ?

- Digital Media (Video, Audio, Images, Text) are easily copied and easily distributed via the web.
- Database outsourcing is a common practice:
 - Stock market data
 - Consumer Behavior data (Walmart)
 - Power Consumption data
 - Weather data
- Effective means for proof of authorship.
 - □ Signature and data are the same object.
- Effective means of tamper proofing.
 - □ Integrity information is embedded in the data.

Why is Watermarking Possible ?

- Real-world datasets can tolerate a small amount of error without degrading their usability
 - Meteorological data used in building weather prediction models, the wind vector and temperature accuracies in this data are estimated to be within 1.8 m/s and 0.5 °C.
 - Such constraints bound the amount of change or alteration to that can be performed on the data.

What defines the usability constraints ?

- Usability constraints are application dependent.
 - Alterations performed by the watermark embedding should be unidentifiable by the human visual system in images/video.
 - For consumer behavior data: watermarking should preserve periodicity properties of the data.

What defines the usability constraints ? (Cont.)

Courtesy of http://maps.google.com

Watermark Desirable Properties

- Detectability (Key-Based System)
 - Can be easily detected only with the knowledge of the secret key.
- Robustness
 - Watermark cannot be easily destroyed by modifying the watermarked data.
- Imperceptibility
 - Presence of the watermark is unnoticeable.
- Blind System
 - Watermark detection does not require the knowledge of the original data.

Outline

- Introductory Material
- General Watermarking Model & Attacks
- WM Technique 1 (Agrawal et al.)
- WM Technique 2 (Sion et al.)
- Future Challenges and References

Watermarking Model

W_D=(100100100....)

Relational and multimedia data

- A multimedia object consists of a large number of bits, with considerable redundancy. Thus, the large watermark hiding bandwidth.
- The relative spatial/temporal positioning of various pieces of a multimedia object typically does not change. Tuples of a relation on the other hand constitute a set and there is no implied ordering between them.
- Portions of a multimedia object cannot be dropped or replaced arbitrarily without causing perceptual changes in the object. However, a pirate of a relation can simply drop some tuples or substitute them with tuples from other relations.

Attacker Model

- Attacker has access to <u>only</u> the watermarked data set.
- The attacker's goal is to weaken or even erase the embedded watermark and at the same time keep the data usable. "Attacker's Dilemma"
- Possible Attacks
 - □ Tuple deletion
 - □ Tuple alteration
 - □ Tuple insertion

Outline

- Introductory Material
- General Watermarking Model & Attacks
- WM Technique 1 (Agrawal et al.)
- WM Technique 2 (Sion et al.)
- Future Challenges and References

WM Technique 1 (Agrawal et. al.)

- Watermarking of numerical data.
- Technique dependent on a secret key.
- Uses markers to locate tuples to hide watermark bits.
- Hides watermark bits in the least significant bits.

WM Technique 1: Encoder

Instead:

Watermark is a function of the data and the secret key

WM Technique 1: Encoder

Assumptions

- □ K, e, m and v are selected by the data owner and are kept secret.
- \square "K" is the secret key.
- "e" least significant bits can be altered in a number without affecting its usability. Example, e=3, 101101101.1011101
- "" used for marker selection and 1/m is fraction of tuples marked
- □ "v" is the number of attributes used in the watermarking process.

Message Authentication Code

- One way hash function H operates on an input message M of arbitrary length and returns a fixed length of has value h.
- Three characteristics
 - Given M, it is easy to compute h
 - Given h, it is hard to compute M
 - Give M, it is hard to find another message M' such that H(M) = H(M')
- A message authentication code (MAC) is a one-way has function that depends on a key.

 $MAC(r.P) = MAC(r.P) = H(K \parallel MAC(K \parallel r.P))$

 r.P is the primary key attribute of relation r, K is a secret key known only to owner, and output is an integer value in a wide range.

WM Technique 1: Encoder

For all tuples r in D

- $\square MAC(r.P) = MAC(r.P) = H(K \parallel MAC(K \parallel r.P))$
- $\Box if(MAC(r.P) mod m == 0)$
 - $i = (MAC(r.P) \mod v$
 - b = (MAC(r.P) mod e
 - if((MAC(r.P) mod 2 == 0)
 □ Set bit b of r.A_i
 - Else

 \Box Clear bit b of r.A_i

// Marker Selection
// Selected Attribute
// Selected LSB index
// MAC is even

WM Technique 1 : Encoder

WM Technique 1 : Decoder

WM Technique 1 : Decoder

- Match = Total Count = 0
- For all tuples r in D
 - r.MAC = H(K||r.P||K)
 - \square if(r.MAC mod m == 0) // Marker Selection
 - Total Count++
 - i = r.MAC mod v // Selected Attribute
 - b = r.MAC mod e // Selected LSB index
 - if(r.MAC mod 2 == 0) // MAC is even
 - \Box if bit b of r.A; is Set
 - Match++
 - Flse
 - \Box If bit b of r.A; is Clear
 - Match++
- Compare (Match/Total count) > Threshold

WM Technique 1 : Decoder

WM Technique 1 : Strengths

- Computationally efficient O(n)
 Tuple sorting not required.
- Incremental Updatability

WM Technique 1 : Weaknesses

- No provision of multi-bit watermark, all operations are dependent only on the secret key.
- Not resilient to alteration attacks. Least Significant Bit (LSB) can be easily manipulated by simple numerical alterations
 Shift LSB bits to the right/left.
- Requires the presence of a primary key in the watermarked relation.
- Does not handle other usability constraints such as:
 - □ Category preserving usability constraints.

Outline

- Introductory Material
- General Watermarking Model & Attacks
- WM Technique 1 (Agrawal et al.)
- WM Technique 2 (Sion et al.)
- Future Challenges and References

WM Technique 2 :(Sion et. al.)

- Watermarking of numerical data.
- Technique dependent on a secret key.
- Instead of primary key uses the most significant bits of the normalized data set.
- Divides the data set into partitions using markers.
- Varies the partition statistics to hide watermark bits.

WM Technique 2 : Encoder

WM Technique 2: How to hide a single bit in a number set ?

Problem:

"Given a number set $S_i = \{s_1, ..., s_n\}$, how to vary their statistics to embed bit b_i . Subject to the provided usability constraints."

Paper 2: How to hide a single bit in a number set ?

Definitions

 $\square \mu = mean(S_i)$

$$\Box \sigma = stdev(S_i).$$

\Box ref = μ + c σ , c is a confidence factor

Vc(S_i) = number of points greater than ref. We refer to them as "positive violators".

Paper 2: How to hide a single bit in a number set ?

31

WM Technique 2: How to avoid using the primary key?

Given a number set $S_i = \{s_1, ..., s_n\}$, generate $Norm(Si) = S_i / max(S_i)$.

For each number in s_k in Norm(Si) use the first n most significant bits (MSB) as the primary key for s_k.

WM Technique 2 : Encoder

Step 1: (Sorting)

□ Compute the MAC of each tuple:

• $r.MAC = H(K \parallel r.P \parallel K)$ // r.P = MSB(r.A)

Sort tuples in ascending order using the computed MAC.

Step 2: (Partitioning)

Locate markers: tuples with r.MAC mod m = 0

Tuples between two markers are in the same partition.

Step 3: (Bit Embedding):

Embed a watermark bit in each partition using the bit embedding technique discussed earlier.

WM Technique 2 : Encoder

1	
1	
1	

Step 1 Sort Ascending According to MAC Step 2 Locate Markers *r.MAC mod m = 0*

Step 3 Bit Embedding

WM Technique 2 : Decoder

WM Technique 2 : Decoder

Step 1: (Sorting & Partitioning)

Partition data set using the same approach used in the encoding phase.

Step 2: (Bit Detection)

□ For each partition S_i compute $V_c(S_i)$ and decode the embedded bit.

Step 3: (Majority Voting):

Watermark bits are embedded in several partitions use majority voting to correct for errors.

WM Technique 2 : Strengths

Bit embedding technique honors usability constraints.

Embeds watermark in data statistics which makes technique more resilient to alteration attacks compared with Least Significant Bits (LSB).

WM Technique 2 : Watermark Synchronization Error (Tuple Addition)

0
1
1
1
1
0

Watermarked Data Set

			I			ı	1
		5	4	3	2	1	0
_	W_0	1	0	1	1	1	0
_	W_1	1	0	1	0	1	0
_	W_2	1	0	0	0	1	1
W	, result	1	0	1	0	1	0
-		5	4	3	2	1	0
-							
_	W_0	0	1	1	1	1	0
_	W_1	0	1	0	1	0	1
_	W_2	0	0	0	1	1	1
W	result	0	1	0	1	1	1

WM Technique 2 : Watermark Synchronization Error (Tuple Deletion)

1
1
•
1
0
U

Watermarked Data Set

	5	4	3	2	1	0
W_0	1	0	1	1	1	0
W_1	1	0	1	0	1	0
W_2	1	0	0	0	1	1
W _{result}	1	0	1	0	1	0
W ₀	0	1	0	1	1	1
W ₀ W ₁	0	1	0	1	1	1
W_1					-	
	1	1	0	1	0	1

Paper 2: Weaknesses

- Watermark suffers badly from watermark synchronization error cause by
 - □ Tuple deletion attacks.

Tuple addition attacks.

No optimality criteria when choosing the decoding thresholds

□ Errors even in absence of attacker.

- No clear systematic approach for manipulating data
 - Only a very small space of the feasible data manipulations investigated.

Outline

- Introductory Material
- General Watermarking Model & Attacks
- WM Technique 1 (Agrawal et al.)
- WM Technique 2 (Sion et al.)
- Future Challenges and References

Challenges

Investigate watermarking other types of data. Such as data streams.

Design robust watermarking techniques that are resilient to watermark synchronization errors.

Design a fragile watermarking technique for relational databases.

References

- J. Kiernan, R. Agrawal, "Watermarking Relational Databases," *Proc. 28th Int'l Conf. Very Large Databases VLDB*, 2002.
- Radu Sion, Mikhail Atallah, Sunil Prabhakar, "Rights Protection for Relational Data," *IEEE Transactions on Knowledge and Data Engineering*, Volume 16, Number 6, June 2004

Questions?

