
Programming in Oracle
with PL/SQL

Procedural Language Extension to SQL

Overview
• Overview of PL/SQL
• Data type and Variables
• Program Structures
• Triggers
• Database Access Using Cursors
• Records
• PL/SQL Tables
• Built-in Packages
• Error-Handling
• PL/SQL Access to Oracle 10g Objects

PL/SQL

• Allows using general programming tools with
SQL, for example: loops, conditions, functions,
etc.

• This allows a lot more freedom than general
SQL, and is lighter-weight than JDBC.

• We write PL/SQL code in a regular file, for
example PL.sql, and load it with @PL in the
sqlplus console.

Other Databases

• All have procedural facilities
• SQL is not functionally complete
– Lacks full facilities of a programming language

• So top up functionality by embedding SQL in a
procedural language

• PL/SQL techniques are specific to Oracle
– but procedures and functions can be ported to other

systems

Why use PL/SQL
• Manage business rules – through middle

layer application logic.
• Generate code for triggers
• Generate code for interface
• Enable database-centric client/server

applications

Using PL/SQL as a programming
language

• Permits all operations of standard programming
languages e.g.
– Conditions IF-THEN-ELSE-END IF;
– Jumps GOTO

• Provides loops for controlling iteration
– LOOP-EXIT; WHEN-END LOOP; FOR-END LOOP; WHILE-

END LOOP

• Allows extraction of data into variables and its
subsequent manipulation

Overview
• Overview of PL/SQL
• Data type and Variables
• Program Structures
• Triggers
• Database Access Using Cursors
• Records
• PL/SQL Tables
• Built-in Packages
• Error-Handling
• PL/SQL Access to Oracle 10g Objects

Use of Data-Types

• Number – used to store any number
• Char(size) & varchar2(size) e.g.: char(10) – used to

store alphanumerical text strings, the char data
type will pad the value stored to the full length
declared.

• Date – used to store dates
• Long – used to store large blocks of text up to 2

gigabytes in length (limited operations)

<variable-name> <datatype> [not null][: =<initial-value>];

<constant-name> constant <datatype> : = <value>];

More data-types
• Long raw – stores large blocks of data

stored in binary format
• Raw – stores smaller blocks of data in

binary formal
• Rowid – used to store the special format of

rowid’s on the database

Variable and constant declaration

<variable-name> <datatype> [not null][: =<initial-value>];

<constant-name> constant <datatype> [: = <value>];

Anchored Data Type

• Variables can also be declared to have anchored
data types

• Data types are determined by looking up another
object’s data type.

• This another data type could be a column in the
database, thereby providing the ability to match
the data types of PL/SQL variables with the data
types of columns defined in the database.

<variable-name> <object> %type [not null][: =<initial-value>];

Anchored Data Type Example

• Record.element notation will address
components of tuples (dot notation)

<variable-name> <object> %type [not null][: =<initial-value>];

commission real(5,2) := 12.5

X commission%type;

Cname employee.empname%type;

Empid empname addr1 addr2 addr3 postcode grade salary

employee

Anchored Data Type Example

• Select values into PL/SQL variables
–using INTO

• %rowtype allows full rows to be selected
into one variable

Empid empname addr1 addr2 addr3 postcode grade salary

V_employee employee%rowtype

Anchored Data Type Example

Selects entire row of data into 1
variable called v_employee

Is updating the value of
salary based on selected
element of a variable

p1.sql

Overview
• Overview of PL/SQL
• Data type and Variables
• Program Structures
• Triggers
• Database Access Using Cursors
• Records
• PL/SQL Tables
• Built-in Packages
• Error-Handling
• PL/SQL Access to Oracle 10g Objects

Program Structures: Procedures and Functions

• A set of SQL and PL/SQL statements grouped together
as a unit (block) to solve a specific problem or perform
a set of related tasks.

• An anonymous block is a PL/SQL block that appears
within your application and it is not named or stored
in the database. In many applications, PL/SQL blocks
can appear wherever SQL statements can appear.

• A stored procedure is a PL/SQL block that Oracle stores
in the database and can be called by name from an
application. May or may not return a value.

• Functions always return a single value to the caller;
procedures do not return values to the caller.

• Packages are groups of procedures and functions.

PL/SQL Blocks

• PL/SQL code is built of Blocks, with a unique
structure.

• Anonymous Blocks: have no name (like scripts)

– can be written and executed immediately in
SQLPLUS

– can be used in a trigger

Anonymous Block Structure
DECLARE (optional)

/* Here you declare the variables you will use in this
block */

BEGIN (mandatory)
/* Here you define the executable statements (what the

block DOES!)*/
EXCEPTION (optional)

/* Here you define the actions that take place if an
exception is thrown during the run of this block */

END; (mandatory)
/

Always put a new line with only a
/ at the end of a block! (This
tells Oracle to run the block)

A correct completion of a block
will generate the following
message:

PL/SQL procedure successfully
completed

Anonymous Blocks

Gets all the rows from customers table and prints the names
of the customers on the screen. It uses tables and cursors.

customers

cursor c

c-rec (row of c)

c_table

SQL> start p2.sql

DECLARE

Syntax

Examples

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Declare
birthday DATE;
age NUMBER(2) NOT NULL := 27;
name VARCHAR2(13) := 'Levi';
magic CONSTANT NUMBER := 77;
valid BOOLEAN NOT NULL := TRUE;

Notice that PL/SQL
includes all SQL types,
and more…

Declaring Variables with the
%TYPE Attribute

Examples

DECLARE
sname Sailors.sname%TYPE;
fav_boat VARCHAR2(30);
my_fav_boat fav_boat%TYPE := 'Pinta';

...

Accessing column sname
in table Sailors

Accessing
another variable

Declaring Variables with the
%ROWTYPE Attribute

Declare a variable with the type of a
ROW of a table.

And how do we access the fields in
reserves_record?

reserves_record Reserves%ROWTYPE;

reserves_record.sid:=9;

Reserves_record.bid:=877;

Accessing
table
Reserves

Creating a PL/SQL Record

A record is a type of variable which we can define (like
‘struct’ in C or ‘object’ in Java)
DECLARE
TYPE sailor_record_type IS RECORD
(sname VARCHAR2(10),
sid VARCHAR2(9),
age NUMBER(3),
rating NUMBER(3));

sailor_record sailor_record_type;
...
BEGIN
Sailor_record.sname:=‘peter’;
Sailor_record.age:=45;

…

Creating a Cursor
• We create a Cursor when we want to go over a

result of a query (like ResultSet in JDBC)

• Syntax Example:

DECLARE
cursor c is select * from sailors;
sailorData sailors%ROWTYPE;

BEGIN
open c;
fetch c into sailorData;

sailorData is a
variable that
can hold a
ROW from
the sailors
table

Here the
first row of
sailors is
inserted into
sailorData

SELECT Statements

• INTO clause is required.
• Query must return exactly one row.
• Otherwise, a NO_DATA_FOUND or TOO_MANY_ROWS

exception is thrown

DECLARE
v_sname VARCHAR2(10);
v_rating NUMBER(3);

BEGIN
SELECT sname, rating
INTO v_sname, v_rating
FROM Sailors

WHERE sid = '112';
END;
/

Conditional logic

If <cond>
then <command>

elsif <cond2>
then <command2>

else
<command3>

end if;

If <cond>
then

if <cond2>
then
<command1>

end if;
else <command2>
end if;

Condition: Nested conditions:

IF-THEN-ELSIF Statements

. . .
IF rating > 7 THEN
v_message := 'You are great';

ELSIF rating >= 5 THEN
v_message := 'Not bad';

ELSE
v_message := 'Pretty bad';

END IF;
. . .

Suppose we have the following table:

• Want to keep track of how
many times someone logged
on to the DB

• When running, if user is
already in table, increment
logon_num. Otherwise, insert
user into table

create table mylog(
who varchar2(30),
logon_num number

);

logon_numwho

3Peter

4John

2Moshe

mylog

Solution
DECLARE
cnt NUMBER;

BEGIN
select logon_num
into cnt //variable store current logon nums
from mylog

where who = user;//func returns current user name

if cnt > 0 then
update mylog
set logon_num = logon_num + 1

where who = user;
else
insert into mylog values(user, 1);

end if;
commit;

end;
/

SQL%ROWCOUNT Number of rows affected by the
most recent SQL statement (an
integer value).

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows.

SQL%NOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows.

SQL%ISOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed.

SQL Cursor

SQL cursor is automatically created after each
SQL query. It has 4 useful attributes:

Solution (2)
BEGIN
update mylog
set logon_num = logon_num + 1
where who = user;

if SQL%ROWCOUNT = 0 then
insert into mylog values(user, 1);

end if;
commit;
END;
/

Loops: Simple Loop

DECLARE
i number_table.num%TYPE := 1;

BEGIN
LOOP
INSERT INTO number_table
VALUES(i);

i := i + 1;
EXIT WHEN i > 10;

END LOOP;
END;

create table number_table(
num NUMBER(10)

);

Loops: Simple Cursor Loop

DECLARE
cursor c is select * from number_table;
cVal c%ROWTYPE;

BEGIN
open c;
LOOP
fetch c into cVal;
EXIT WHEN c%NOTFOUND;
insert into number_table values(cVal.num*2);

END LOOP;
END;

create table number_table(
num NUMBER(10)

);

Loops: FOR Loop

DECLARE
i number_table.num%TYPE;

BEGIN
FOR i IN 1..10 LOOP
INSERT INTO number_table VALUES(i);

END LOOP;
END;

Notice that i is incremented automatically

Loops: For Cursor Loops

DECLARE
cursor c is select * from number_table;

BEGIN
for num_row in c loop

insert into doubles_table
values(num_row.num*2);

end loop;
END;
/

Notice that a lot is being done implicitly: declaration
of num_row, open cursor, fetch cursor, the exit
condition (refer to slide 19 for details)

Loops: WHILE Loop

DECLARE
TEN number:=10;
i number_table.num%TYPE:=1;
BEGIN
WHILE i <= TEN LOOP

INSERT INTO number_table VALUES(i);
i := i + 1;

END LOOP;
END;

Printing Output
• You need to use a function in the DBMS_OUTPUT

package in order to print to the output

• If you want to see the output on the screen, you must
type the following (before starting):
set serveroutput on format wrapped size 1000000

• Then print using
– dbms_output. put_line(your_string);

– dbms_output.put(your_string);

Input and output example
set serveroutput on format wrap size 1000000
ACCEPT high PROMPT 'Enter a number: '

DECLARE
i number_table.num%TYPE:=1;
BEGIN
dbms_output.put_line('Look, I can print from PL/SQL!!!');
WHILE i <= &high LOOP

INSERT INTO number_table
VALUES(i);
i := i + 1;

END LOOP;
END;

Reminder- structure of a block

DECLARE (optional)
/* Here you declare the variables you will use in this block */

BEGIN (mandatory)
/* Here you define the executable statements (what the

block DOES!)*/
EXCEPTION (optional)

/* Here you define the actions that take place if an exception
is thrown during the run of this block */

END; (mandatory)
/

Functions and Procedures

Functions and Procedures

• It is useful to put code in a function or
procedure so it can be called several times

• Once we create a procedure or function in a
Database, it will remain until deleted (like a
table).

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

IS|AS
PL/SQL Block;

Creating Procedures

• Modes:
– IN: procedure must be called with a value for the parameter.

Value cannot be changed
– OUT: procedure must be called with a variable for the parameter.

Changes to the parameter are seen by the user (i.e., call by
reference)

– IN OUT: value can be sent, and changes to the parameter are
seen by the user

• Default Mode is: IN

Procedures
Creation command

Variable declarations

Body of code

Create or replace procedure sample1 as

v_num1 constant number := 2.5;
v_num2 constant number := 4;

v_product number;
BEGIN
v_product := v_num1 * v_num2;

END;

create or replace procedure
num_logged
(person IN mylog.who%TYPE,
num OUT mylog.logon_num%TYPE)
IS
BEGIN

select logon_num
into num
from mylog
where who = person;

END;
/

Example- what does this do?

logon_
num

who

3Pete

4John
2Joe

Table mylog

declare
howmany mylog.logon_num%TYPE;

begin
num_logged(‘John',howmany);
dbms_output.put_line(howmany);

end;
/

Calling the Procedure

More procedures: p3.sql

Errors in a Procedure

• When creating the procedure, if there are errors in
its definition, they will not be shown

• To see the errors of a procedure called myProcedure,
type

SHOW ERRORS PROCEDURE myProcedure

in the SQLPLUS prompt
• For functions, type

SHOW ERRORS FUNCTION myFunction

Creating a Function

• Almost exactly like creating a procedure, but you
supply a return type

CREATE [OR REPLACE] FUNCTION
function_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

RETURN datatype
IS|AS
PL/SQL Block;

create or replace function
rating_message(rating IN NUMBER)
return VARCHAR2
AS
BEGIN
IF rating > 7 THEN
return 'You are great';

ELSIF rating >= 5 THEN
return 'Not bad';

ELSE
return 'Pretty bad';

END IF;
END;
/

A Function

NOTE THAT YOU
DON'T SPECIFY

THE SIZE

declare
paulRate:=9;

Begin
dbms_output.put_line(ratingMessage(paulRate));
end;
/

Calling the function

More functions: p4.sql

create or replace function squareFunc(num in number)
return number
is
BEGIN
return num*num;
End;
/

BEGIN

dbms_output.put_line(squareFunc(3.5));

END;

/

Creating a function:

Using the function:

Stored Procedures and Functions

• The procedures and functions we discussed were
called from within the executable section of the
anonymous block.

• It is possible to store the procedure or function
definition in the database and have it invoked from
various of environments.

• This feature allows for sharing of PL/SQL code by
different applications running in different places.

Stored Procedures
Created in a user's schema and

stored centrally, in compiled form
in the database as a named
object that can be:
– interactively executed by a user using a

tool like SQL*Plus
– called explicitly in the code of a

database application, such as an Oracle
Forms or a Pre compiler application, or
in the code of another procedure or
trigger

When PL/SQL is stored in the
database, applications can send
blocks of PL/SQL to the database
rather than individual SQL
statements ® reducing network
traffic. .

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code HIRE_EMP(…)
BEGIN
.
.
END;

Database Applications

Stored
Procedure

Database

Stored Procedures and Functions

• AS keyword means stored procedure/function
• IS keyword means part of anonymous block
• So does stored function

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

AS
PL/SQL Block;

Stored function: p5.sql

get_city function returns city name given customer number.
customers(cno, cname, zip) zipcodes(cnum, zip, city)

SQL>SELECT CNO, CNAME, get_city(cno)

2 from customers;

CNO CNAME GET_CITY(CNO)

------ --------- --------------------

1111 Charles Wichita

2222 Bertram Wichita

Call Stored function

Benefits of Stored Procedures I

• Security
– Control data access through procedures and functions.
– E.g. grant users access to a procedure that updates a table,

but not grant them access to the table itself.
• Performance

The information is sent only once between database and
application and thereafter invoked when it is used.

– Network traffic is reduced compared with issuing individual
SQL statements or sending the text of an entire PL/SQL block

– A procedure's compiled form is readily available in the
database, so no compilation is required at execution time.

– The procedure might be cached

Benefits of Procedures II

• Memory Allocation
– Stored procedures take advantage of the shared memory capabilities of

Oracle
– Only a single copy of the procedure needs to be loaded into memory for

execution by multiple users.

• Productivity
– By designing applications around a common set of procedures, you can

avoid redundant coding and increase your productivity.
– Procedures can be written to insert, update, or delete rows from a table

and then called by any application without rewriting the SQL statements
necessary to accomplish these tasks.

– If the methods of data management change, only the procedures need to
be modified, not all of the applications that use the procedures.

Benefits of Procedures III

• Integrity
– Stored procedures improve the integrity and consistency of

your applications. By developing all of your applications
around a common group of procedures, you can reduce the
likelihood of committing coding errors.

– You can test a procedure or function to guarantee that it
returns an accurate result and, once it is verified, reuse it in
any number of applications without testing it again.

– If the data structures referenced by the procedure are
altered in any way, only the procedure needs to be
recompiled; applications that call the procedure do not
necessarily require any modifications.

Packages

• collection of procedures and function
• In a package, you can allow some of the members to

be "public" and some to be "private"
• There are also many predefined Oracle packages

Packages Example

• A package called process_orders in p6.sql
• Contains three procedures

– add_order takes user input and insert a new row to orders table.
– add_order_details receives input and add a new row to odetails

table.
– ship_order updates shipped value for the order.

Execute procedures in the package:

SQL> execute process_orders.add_order(2000,111,1000,null);

SQL> execute process_orders.add_order_details(2000,10509,50) ;

SQL> execute process_orders.ship_order(2000,10509,50);

Exercises in bb4.utc.edu

• Create three databases using the scripts from
blackboard. File name is plsql.ch02.

• Start and test procedures or functions from
p1.sql to p6.sql. File name is plsql.ch03.

