Multilevel Security (MLS)

Database Security and Auditing

Multilevel Security (MLS)

Definition and need for MLS

- Security Classification
- Secrecy-Based Mandatory Policies: Bell-LaPadula Model
- Integrity-based Mandatory Policies: The Biba Model
- Limitation of Mandatory Policies

***** Hybrid Policies

- The Chinese Wall Policy

***** Multilevel security involves a database in which the data stored has an associated classification and consequently constraints for their access ***** MLS allows users with different classification levels to get different views from the same data ***** MLS cannot allow **downward leaking**, meaning that a user with a lower classification views data stored with a higher classification

- Set With the Se
- Some private systems also have multilevel security needs
- MLS relation is split into several single-level relations, A recovery algorithm reconstructs the MLS relation from the decomposed single-level relations
- * At times MLS updates cannot be completed because it would result in leakage or destruction of secret information

In relational model, relations are tables and relations consist of tuples (rows) and attributes (columns)

₩ Example:

Consider the relation

SOD(Starship, Objective, Destination)

Starship	Objective	Destination
Enterprise	Exploration	Talos
Voyager	Spying	Mars

The relation in the example has <u>no</u> <u>classification</u> associated with it in a relational model

★ The same example in MLS with <u>classification</u> will be as follows:

Stars	ship	Objective		Des	stination
Enterprise	U	Exploration	U	Talos	U
Voyager	U	Spying	S	Mars	S

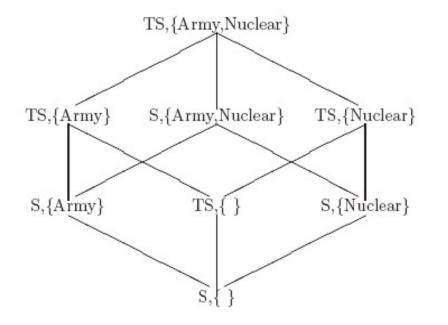
***** In MLS, access classes can be assigned to:

- Individual tuple in a relation
- Individual attribute of a relation
- Individual data element of tuples in a relation

₭ Bell – LaPadula Model₭ Biba Model

- ₭ Bell-LaPadula model was developed in 1973
- * This is an extension of the Access Matrix model with classified data
- ***** This model has two components:
 - Classification
 - Set of categories

Sell-LaPadula model shows how to use Mandatory Access Control to prevent the Trojan Horse

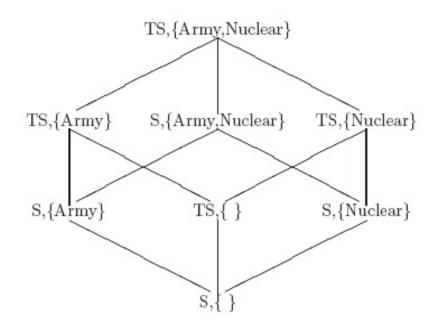

- Classification has four values {U, C, S, TS}
 - \blacksquare U = unclassified
 - C = confidential
 - \blacksquare S = secret
 - $\blacksquare TS = top secret$
- Classifications are ordered: TS > S > C > U

Set of categories consists of the data environment and the application area, i.e., Nuclear, Army, Financial, Research

Example: In USA, a "SECRET" clearance involves checking FBI fingerprint files.

$\frac{\text{An access class c1}}{\text{dominates}} \geq \frac{\text{an access class c2}}{\text{iff}}$

- Security level of c1 is greater than or equal to that of c2
- <u>The categories of c1</u> include those of c2

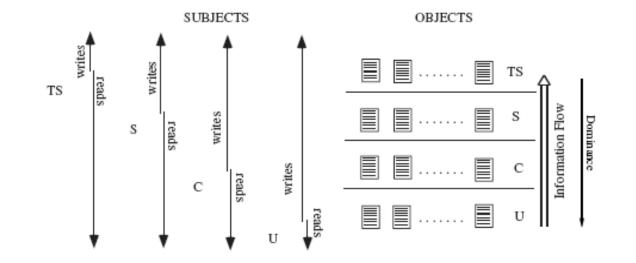

- Bell-LaPadula model is based on a subjectobject paradigm
- Subjects are active elements of the system that execute actions
- *** Objects** are passive elements of the system that contain information
- Subjects act on behalf of users who have a security level associated with them (indicating the level of system trust)

Subjects execute access modes on objects
Access modes are:

- Read-only
- Append (writing without reading)
- Execute
- Read-write (writing known data)

Decentralized administration of privileges on objects

- *** Control** direct and indirect **flows of information**
- ***** Prevent leakage to unauthorized subjects
- We with any access class dominated by their clearance



Two Principles

***** To protect information confidentiality

- No-read-up, a subject is allowed a read access to an object only if the access class of the subject dominate the access class of the object
- No-write-down, a subject is allowed a write access to an object only if the access class of the subject is dominated by the access class of the object

No-read-up & No-write-down

Can TS subject write to S object?
Can S subject write to U object?
How to apply to the Trojan Horse case?

Solution to Trojan Horse

* Possible classification reflecting the access restrictions:

- Secret for *Vicky* and "Market"
- Unclassified to John and "Stolen"
- If Vicky connect to system as secret, write is <u>blocked</u>
- If Vicky connects to system as unclassified, read is blocked

* Is Vicky allowed to write to the unclassified object? How?

Applying BLP: An Example

** Alice has (Secret, {NUC, EUR}) clearance** David has (Secret, {EUR}) clearance

- David can talk to Alice ("write up" or "read down")
- Alice cannot talk to David ("read up" or "write down")
- ** Alice is a user, and she can login with a different ID (as a different principle) with reduced clearance
 - Alias1 (Secret, {NUC, EUR})
 - Alias2 (Secret, {EUR})

BLP: Problem

If I can write up, then how about writing files with blanks?

 Blind writing up may cause integrity problems, but not a confidentiality breach

* Two main properties of this model for a secure system are:

- Simple security property
- Star property

Simple security means: a subject at a given security level may not read an object at a higher security level (no read-up).

- **Star property means:** a subject at a given security level must not write to any object at a lower security level (**no write-down**).
- * This model guarantees secrecy by preventing unauthorized release of information
- * This model does not protect from unauthorized modification of information

Key Points

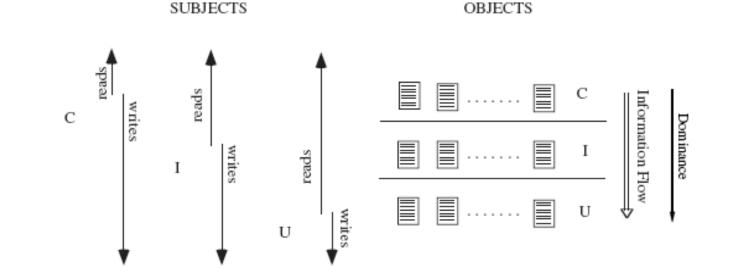
Confidentiality models restrict flow of information
 Bell-LaPadula (BLP) models multilevel security
 Cornerstone of much work in computer security
 Simple security property says no read up and

- Star property says no write down
- Both ensure information can only flow up

The Biba Model

- * A model due to Ken Biba which is often referred to as <u>"Bell-LaPadula upside down."</u>
- It deals with integrity alone and ignores confidentiality entirely.
- Each subject and object in the system is assigned an integrity classification
 - Crucial
 - Important
 - Unknown

Integrity Level


<u>Integrity level</u> of a user reflects user's trustworthiness for inserting, modifying, or deleting information

Integrity level of an object reflects both the degree of trust that can be placed on the info stored in the object, and the potential damage could result from unauthorized modification of info

Two principles

** No-read-down: A subject is allowed a <u>read</u> access to an object only if the access class of the object dominates the access class of the subject

** No-write-up: A subject is allowed a <u>write</u> access to an object only if the access class of the subject is dominated by the access class of the object

Q: How to control both the secrecy and integrity?

Applying Mandatory Policies to Databases

- Commercial DBMSs Oracle, Sybase, and TruData have MLS versions of their DBMS
- Because of Bell-LaPadula restrictions, subjects having different clearances see different versions of a multilevel relation

Name	$\lambda_{\mathbf{N}}$	Dept	$\lambda_{\mathbf{D}}$	Salary	$\lambda_{\mathbf{S}}$		
Bob	U	Dept1	U	$100 \mathrm{K}$	U		
Jim	U	Dept1	U	$100 \mathrm{K}$	U		
Ann	\mathbf{S}	Dept2	S	200K	S		
Sam	U	Dept1	U	150K	S		
(a)							

Name	λ_N	Dept	$\lambda_{\mathbf{D}}$	Salary	λ_{s}
Bob	U	Dept1	U	$100 \mathrm{K}$	U
Jim	U	Dept1	U	100K	U
Sam	U	Dept1	U	_	U

(b)

Visible to a user with secret level.

Visible to a user with unclassified level.

Polyinstantiation

- ₭ Request by low level subject
 - An unclassified subject request insert of <Ann, Dept1, 100K>
- If this update is rejected, then the user would be able to infer something about Ann
- MLS would allow the secret channel to permit data update and protect data integrity

Name	λ_N	Dept	$\lambda_{\mathbf{D}}$	Salary	λ_s
Bob	U	Dept1	U	100K	U
Jim	U	Dept1	U	100K	U
Ann	S	Dept2	S	200K	S
Sam	U	Dept1	U	150K	S
Ann	U	Dept1	U	100K	U
Sam	U	Dept1	U	100K	U

Name	λ_N	Dept	$\lambda_{\mathbf{D}}$	Salary	λ_s	
Bob	U	Dept1	U	100K	U	
Jim	U	Dept1	U	100K	U	
Ann	U	Dept1	U	100K	U	
Sam	U	Dept1	U	100K	U	

(a)

(b)

Visible to a user with secret level.

Visible to a user with unclassified level.

Polyinstantiation

- ***** Request by high level subjects
 - A secret subject request to insert <Bob, Dept2, 200K>
 - Inform the subject of the conflict and refuse the insertion (no)
 - Overwrite the existing tuple (no)

Name	λ_N	Dept	$\lambda_{\mathbf{D}}$	Salary	λ_{s}
Bob	U	Dept1	U	100K	U
Jim	U	Dept1	U	100K	U
Ann	S	Dept2	S	200K	S
Sam	U	Dept1	U	150K	S
Bob	S	Dept2	S	200K	S
Jim	U	Dept1	U	150K	S

Name	λ_N	Dept	$\lambda_{\mathbf{D}}$	Salary	λ_{s}
Bob	U	Dept1	U	100K	U
Jim	U	Dept1	U	100K	U
Sam	U	Dept1	U	-	U

(a)

(b)

Challenges

***** Cover Stories

- Non-true data to hide the existence of the actual value
- Not released is a cause of information leakage
- ₩ Fine-grained is not easy
 - Aggregation, association
 - Block inference channels

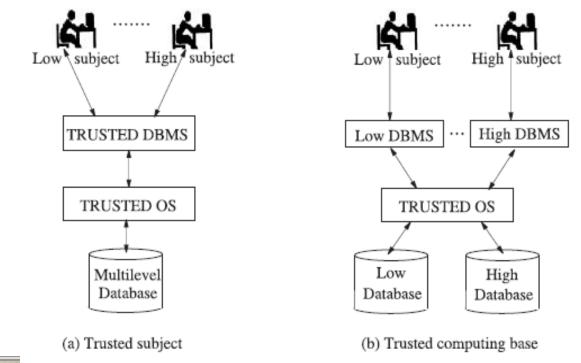
Covert Channels

- ★ A <u>covert channel</u> is an information flow that is not controlled by a security mechanism.
- ✗ In BLP, you could use the access control mechanism itself to construct a covert channel.
 - A low level subject makes an object "*dummy.obj*" at its own level.
 - Its high level accomplice either <u>upgrades</u> the security level of *dummy.obj* to high or <u>leaves it unchanged</u>.
 - Later, the low level subject tries to read *dummy.obj*. Success or failure of this request disclose the action of the high-level subject.
 - <u>One bit of information has flown from high to low.</u>
 - Failure means *dummy.obj* has be upgraded; success means *dummy.obj* has not been changed

Covert Channels (cont'd)

***** Other Examples for Covert Channels:

- Timing Channels
- Resource State
- Hidden Information in downgraded documents


***** Commonly used techniques for reducing covert channels:

- Reduce abusable functionality
- High level processes get lowest resource allocation priority and can be preempted by low level processes.
- Random delays, clock noise, randomized resource availability.
- Auditing the use of known channels
- Polyinstantiation

Multilevel DBMSs Architecture

• Trusted subject. The DBMS itself must be trusted to ensure mandatory policy

• Trusted Computing Base: Data are partitioned in different databases, one for each level

Sushil Jajodia and Ravi S. Sandhu, Toward a Multilevel Secure Relational Model, essay 20

Discussion (15 min)

Customer order scenario from page 161 in the textbook

Identify the subject, actions, objects# Design the MAC

Access Control

Mandatory Access Control

- Security Classification
- Secrecy-Based Mandatory Policies: Bell-LaPadula Model
- Integrity-based Mandatory Policies: The Biba Model
- Limitation of Mandatory Policies

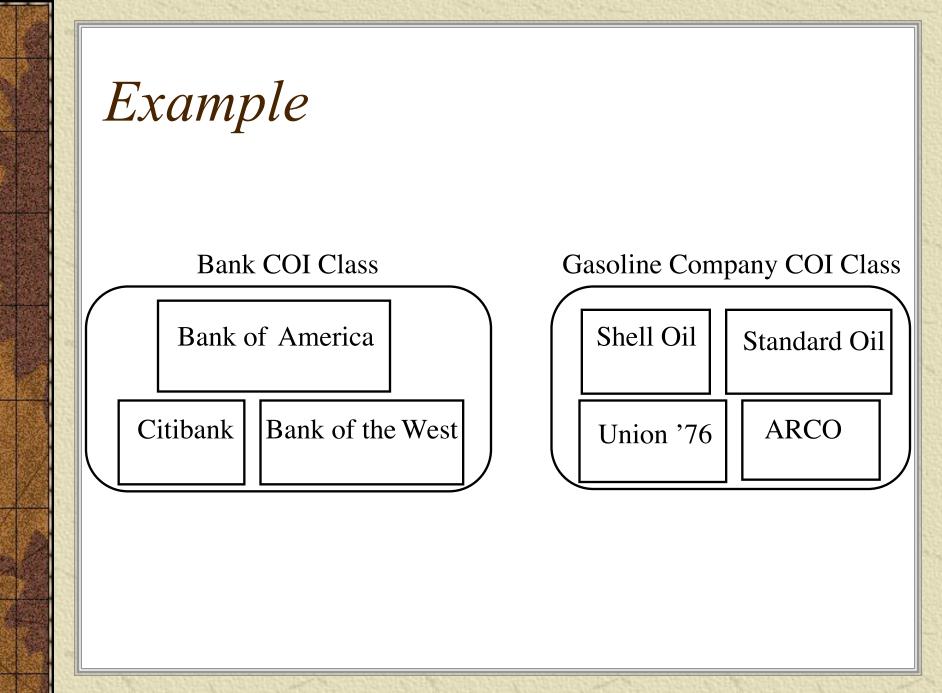
***** Hybrid Policies

- The Chinese Wall Policy

Chinese Wall Model

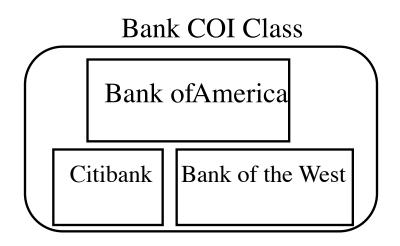
Problem:

- Tony advises <u>American Bank</u> about investments
- He is asked to advise <u>Toyland Bank</u> about investments


Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank

Organization

- Organize entities into "conflict of interest" classes
- ₭ Control subject <u>accesses</u> to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone


Definitions

- *Objects*: items of information related to a company
- *Company dataset* (CD): contains objects related to a single company
 - Written CD(O)
- *Conflict of interest class* (COI): contains datasets of companies in competition
 - Written COI(O)
 - Assume: each object belongs to exactly one COI class

Temporal Element

- ✗ If Anthony reads any CD in a COI, he can *never* read another CD in that COI
 - Possible that information learned earlier may allow him to make decisions later
 - Let PR(S) be set of objects that S has already read

CW-Simple Security Condition

s can read o iff :

*

桊

- 1. s has read something in o's dataset, and object o is in the same company datasets as the objects already access by s, that is "within the Wall", or
- 2. s has not read any objects in o's conflict of interest class, what s has read belongs to an entirely different conflict of interest class

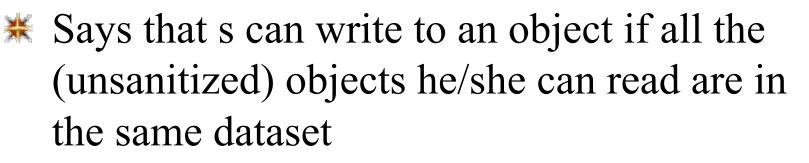
Ignores sanitized data (see below)

Sanitization

***** Public information may belong to a CD

- As is publicly available, no conflicts of interest arise
- So, should not affect ability of analysts to read
- Typically, all sensitive data removed from such information before it is released publicly (called *sanitization*)
- * Add third condition to CW-Simple Security Condition:
 - 3. *o* is a sanitized object

Writing


** Anthony, Susan work in same trading house
** Anthony can read Bank 1's CD, Gas' CD
** Susan can read Bank 2's CD, Gas' CD
** If Anthony could write to Gas' CD, Susan can read it

 Hence, indirectly, she can read information from Bank 1's CD, a clear conflict of interest

CW--Property*

Write access is only permitted if

- Access is permitted by the CW-simple security rule, and
- For all unsanitized objects o', if s can read
 o', then CD(o') = CD(o)

Lab 3 (submission is not required)

Install Oracle Label Security & Using Oracle Label Security

- <u>http://apex.oracle.com/pls/apex/f?p=44785:24:</u> 3634991866798098::NO:24:P24_CONTENT_I D,P24_PREV_PAGE:4509,2
- <u>http://apex.oracle.com/pls/apex/f?p=44785:24:</u> <u>3634991866798098::NO:24:P24_CONTENT_I</u> <u>D,P24_PREV_PAGE:4548,2</u>

Oracle Label security in the tutorial

* Test user hr with password hr is the owner of table locations after installation.

≭ connect hr/hr

select * from locations

What you need?

- * One user who owns a database LOCATIONS, and grants privileges to created users -- hr
- ✗ One user to create policy − LBACSYS
- * One security policy ACCESS_LOCATIONS
- * One column appended to table LOCATIONS and hold security labels -- OLS_COLUMN
- * One user creates security levels and labels -- sec_admin
- One user creates Users, Roles and binds with security labels -- hr_sec

Major steps

- K create users (sec_admin, hr_sec, SKING, KPARTNER, and LDORAN)
- * create a policy
 - create a policy 'ACCESS_LOCATIONS' by lbacsys
 - lbacsys grants some executive rights (ACCESS_LOCATIONS_DBA) to sec_admin (SA_COMPONENT) and hr_sec (SA_USER_ADMIN), so they can change the security policy.
 - sec_admin create security level and labels: 'SENS', 'CONF', 'PUB'
- ***** setting user authorization
 - HR_sec binds the labels to the users, defining their clearance.
 - Give owner HR the FULL access to the table
- * Applying a policy to a table, only HR can read the data, no label set yet.
- * Adding labels to the data by HR.
- * revoking Access from Admin Users (sec_admin, hr_sec), revoke ACCESS_LOCATIONS_DBA
- * Testing the Policy implementation by connecting to database from different user accounts.

Users

User	Password and role					
sysdba	Create, alter user, grant CREATE SESSION privilege					
system	password: oracle					
	create users: sec_admin and hr_sec with password welcome1					
	grant <i>connect</i> to <i>emp_role</i>					
LBACSYS	password: LBACSYS					
	default Oracle DBA for Oracle Label Security (OLS)					
	After creating a policy					
	He has a role <policy_name>_DBA with 'ADMIN' option,</policy_name>					
	which allow him to grant <i>execute on SA_COMPONENTS</i> and <i>execute on SA_USER_ADMIN</i> to other users such as <i>sec_admin</i> and <i>HR_sec</i> .					
sec_admin	password: welcome1					
	Create levels and labels					

Users

hr_sec	password: welcome1
	Maintain user-related part of the OLS, create database roles, users and grants clearance to them. Bind labels to the users.
	create role emp_role
	create user SKING identified by welcome1
	grant role emp_role to SKING
	create user KPARTNER identified by welcome1
	grant role emp_role to KPARTNER
	grant user LDORAN identified by welcome1
	grant role emp_role to KPARTNER
hr	Password: hr
	Owner of table locations, who determines the sensitivity of his data and who will get access to which level of sensitivity.
	Grant select to emp_role
	Adding labels to the data

Users

SKING	Password: welcome1
	Labeled as 'SENS' by hr, owner of table locations
KPARTNER	Password: welcome1
	Labeled as 'CONF' by hr, owner of table locations
LDORAN	Password: welcome1
	Labeled as 'PUB' by hr, owner of table locations

Tables, Policy, and Colum of Labels

Table name	Owner
LOCATIONS	A table owned by hr
Policy name	Creator and objective
ACCESS_LOCATIO NS	Creator is LBACSYS
	Control access to hr.LOCATIONS table
Colum name	objective
OLS_COLUMN	Name of the hidden column, will be appended to the hr.LOCATIONS table
	Holds the data label.

Classified Users and Labeled Users

Labeled table:		
City	country_id,	label_to_char (OLS_COLUMN)
Venice	IT	PUB
Hiroshima	JP	PUB
Southlake	US	PUB
South San Francisco	US	PUB
South Brunswick	US	PUB
Seattle	US	PUB
Toronto	CA	PUB
Whitehorse	СА	PUB
Bombay	IN	PUB
Sydney	AU	PUB
London	UK	PUB
Stratford	UK	PUB
Sao Paulo	BR	PUB
Geneva	СН	PUB
Bern	СН	PUB
Utrecht	NL	PUB
Mexico city	MX	PUB
Roma	IT	CONF
Oxford	UK	CONF
Munich	DE	CONF
Tokyo	JP	SENS
Beijing	CN	SENS
Singapore	SG	SENS

Classified Users:

SKING (SENS) KPARTNER (CONF) LDORAN (PUB)

Inference and Aggregation

Introduction

***** Inferring prohibited information from results of queries is known as the inference problem. ***** Inference problem uses an inference channel. ***** Inference channel in a database provides a facility to infer data with a higher classification from a data with a lower classification. ***** Goal of inference problem is to detect and remove inference channels

Outline

- Description of some specific inference channels.
- ★ Techniques that have been developed to <u>close</u> them.
- * Aggregation problem that constitute a special kind of inference problem.

nference Problems

Inference involves indirect access

Example: User has privilege to view data X but not data Y. Both these data are in table T. If the query

SELECT X FROM T WHERE Y = value

produces any result, then user has inferred something about Y

- If user attempts an insert and it is denied, then it leads to inference Inferences of this type are easy to eliminate.
 - The system can either modify the user query such that the query involves only the authorized data or simply abort the query.
- If the user is cleared to see all data involved in the query, then the result can be returned to him, but it must be labeled at the least upper bound of all labels involved in the query.

nference Problems

Inference involves indirect access

Example

- Unclassified relation EP(EMPLOYEE-NAME, PROJECT-NAME)
- Secret relation PT(PROJECT-NAME, PROJECT-TYPE)
- The existence of the relation scheme PT is unclassified.

Uncleared user made the SQL query

- SELECT EP.EMPLOYEE-NAME
- FROM EP, PT

WHERE EP.PROJECT-NAME = PT.PROJECT-NAME

Although the output of this query is unclassified, it reveals Secret information in PT relation. We have an inference channel.

Inference Problems

Inference could also result from correlated data, meaning that visible data is related to invisible data

- Knowing the values t and k can to guess an unknown value z = t * k is inference
- Estimating value of z requires reducing the degree of uncertainty for z. Reducing the uncertainty degree using results of authorized queries is also inference

Inference Problems

Inference could also result from missing data

* A channel of missing data is an inference channel

Missing data usually comes from having null values for fields such as salary when an employee has a name and department identified

- Key integrity requires that every tuple in a relation must have a unique key.
- Functional and multivalued dependencies are constraints over the attributes of a relation.
- * Value constraints is a constraint on data values that can involve one or more items of data
- * Classification constraints is a rule describing the criteria according to which data is classified.

- Key integrity: A user at a low security class can use <u>the low security class data</u> and <u>the constraint</u> (if it is made available to the user) to infer information about <u>high security class data</u> also affected by the constraint.
- ** This constraint does not cause a problem when data is classified <u>at the relation or column level</u>, since in that case <u>all keys in a relation are at the</u> <u>same security class</u>.

- ✗ If a low security class user who wants to enter a tuple in a relation in which data is classified at either the tuple or the element level.
- If a tuple with the same key at a higher security class already exists, then to maintain key integrity, the DBMS must <u>either delete the existing tuple</u> or <u>inform the user that</u> <u>a tuple with that key already exists</u>.

💥 Problems

- In the first case, the actions of a low user can cause data inserted by a high user to be deleted, which is unacceptable.
- In the second case, we have an inference channel: The existence of high data is allowed to affect the existence of low data.

To illustrate, consider the following instance (where "Name" is the key for the relation):

Suppose an unclassified user wants to insert the tuple (Wombat, Norfolk, Nuclear).

We have an integrity problem if we delete the secret tuple (since it is possible that the entry "Norfolk" in the unclassified tuple is merely a cover story for the real, classified entry "Persian Gulf").

If we reject the insertion, then the low user can derive an inference.

this problem can be eliminated using polyinstantiation, in which case both tuples are allowed to exist.

Label	Name	Destination	Engine
S	Wombat	Persian Gulf	Nuclear

In **Functional and multivalued dependencies**, inference channels can arise if certain functional dependencies are known to low users.

Example 2. Assume that a company database consists of the relation scheme EMP-SAL(NAME, RANK, SALARY). The attributes NAME and RANK are nonsensitive, while the attribute SALARY is sensitive.

Suppose every employee is aware of the constraint that all employees <u>having identical ranks have the same salaries</u>. Given this scenario, an employee who is not permitted to have access to sensitive data can easily determine employee salaries, which are sensitive.

- ✗ If the rank of an employee is known to a user, then the employee's salary is also known to that user.
- **Solution:** Raise the classification of the attribute RANK from nonsensitive to sensitive.
- If attributes are assigned security labels in a manner consistent with the functional dependencies, then these inference threats can be eliminated.

- More solutions: Su and Ozsoyoglu give several algorithms for raising the classification labels of attributes based on functional and multivalued dependencies among them.
- ***** One of their algorithms takes as **input**
 - a list of attributes,
 - the proposed classification labels of the attributes, and
 - a set of functional dependencies that cause inferences.

* The algorithm produces as **output** another list of attributes together with their classification labels such that the list is free of inference channels arising from functional dependencies.

- In value constraints, a constraint defined over data at different security levels, availability may lead to inference channels.
- ₭ Example 3. Suppose that an attribute A is Unclassified while attribute B is Secret.
- **★** Suppose the database enforces the constraint A + $B \le 20$, which is made available to Unclassified users.
- * The value of B does not affect the value of A directly, but it does determine the set of possible values A can take.

Inference Problem

The **inference problem is a way to infer or derive** sensitive data from non-sensitive data.

Sum: An attack by sum tries to infer a value from reported sum. Often helps us determine a negative result.

Name	Gender	Race	Aid	Fines	Drugs	Dorm
Adams	M	С	5000	45	1	Holmes
Bailey	M	В	0	0	0	Grey
Chin	F	А	3000	20	0	West
Dewitt	M	В	1000	35	3	Grey
Earhart	F	С	2000	95	1	Holmes
Fein	F	С	1000	15	0	West
Groff	M	С	4000	0	3	West
Hill	F	В	5000	10	2	Holmes
Koch	F	С	0	0	1	West
Liu	F	А	0	10	2	Grey
Majors	M	С	2000	0	2	Grey

Sum of	Sum of Financial Aid by Dorm and Sex							
	Holmes	Grey	West	Total				
Μ	5000	3000	4000	12000				
F	7000	0	4000	11000				
Total	12000	3000	8000	23000				
25 - Y		60 ·	814	84 - 468.				

Inference Problem

Count: count + sum → average; average + count → sum

- This report reveals that two males in Holmes and West are receiving financial aid in the amount of \$5000 and \$4000, respectively.
 - Holmes \rightarrow Adams
 - West \rightarrow Groff

Name	Gender	Race	Aid	Fines	Drugs	Dorm
Adams	M	С	5000	45	1	Holmes
Bailey	M	В	0	0	0	Grey
Chin	F	А	3000	20	0	West
Dewitt	M	В	1000	35	3	Grey
Earhart	F	С	2000	95	1	Holmes
Fein	F	С	1000	15	0	West
Groff	M	С	4000	0	3	West
Hill	F	В	5000	10	2	Holmes
Koch	F	С	0	0	1	West
Liu	F	А	0	10	2	Grey
Majors	M	С	2000	0	2	Grey

Count of students by Dorm and Sex

100	Holmes		Grey		West		Total	
M	$\left \right.$	1	>	3	\bigcirc	1	>	5
F		2		1		3		6
Total		3		4		4		11

Sum of Financial Aid by Dorm and Sex

	Holmes	Grey West		Total
M	5000	3000	4000	12000
F	7000	0	4000	11000
Total	12000	3000	8000	23000

Inference Problem

Data Table

Data

	LastName	Gender	Title	City	State	Salary	Dependents
	Monroe	F	Consultant	Atlanta	GA	50000	2
	Jobs	M	DBA	Cupertino	CA	98000	1
	Goldberg	F	Manager	Palo Atto	CA	75000	11
	Kay	M	Director	Sacramento	CA	82000	3
	Gates	M	Director	Seattle	WA.	1980000	5
	Hopper	F	Manager	Boston	MA	32000	2
	Wozniack	M	Director	Freemont	CA	65000	3
	Codd	M	Consultant	San Jose	CA	22000	4

Input

INTENDED Calculate salary average by: Gender Dependents INFERENCE: Title Select Gender = 'F' × City = 11 Dependents × State Next Reset Output

	LastName	Gender	Title	Salary
•	Goldberg	F	Manager	76000

Message

The user was able to infer additional information about the data contained in the database even though they were only supposed to have access to aggregated results. Because the user in this case had additional knowledge about an individual whose data was contained in the database, they were able to access confidential information about that person.

Controls for Statistical Inference Attacks

***** Controls are applied to queries

- Difficult to determine if query discloses sensitive data
- Controls are applied to individual items within the database (security vs. precision)
 - Suppression: sensitive data values are not provided; query is rejected without response
 - Many results suppressed; precision high
 - Concealing: answer provided is close to by not exactly the actual value
 - More results provided; precision low

Limited Response Suppression

The n-item k-percent rule eliminates certain low-frequency elements from being displayed When one cell is suppressed in a table with totals for rows and columns, must suppress at least one additional cell on the row and one on the column to provide some confusion.

Count of students by Dorm and Sex

	Holmes	Grey	West	Total
M	1	3	1	5
F	2	1	3	6
Total	3	4	4	11

Count of students by Dorm and Sex With improper low count suppression

anan i	Holmes	Grey	West	Total
М	-	3	-	5
F	2	-	3	6
Total	3	4	4	11

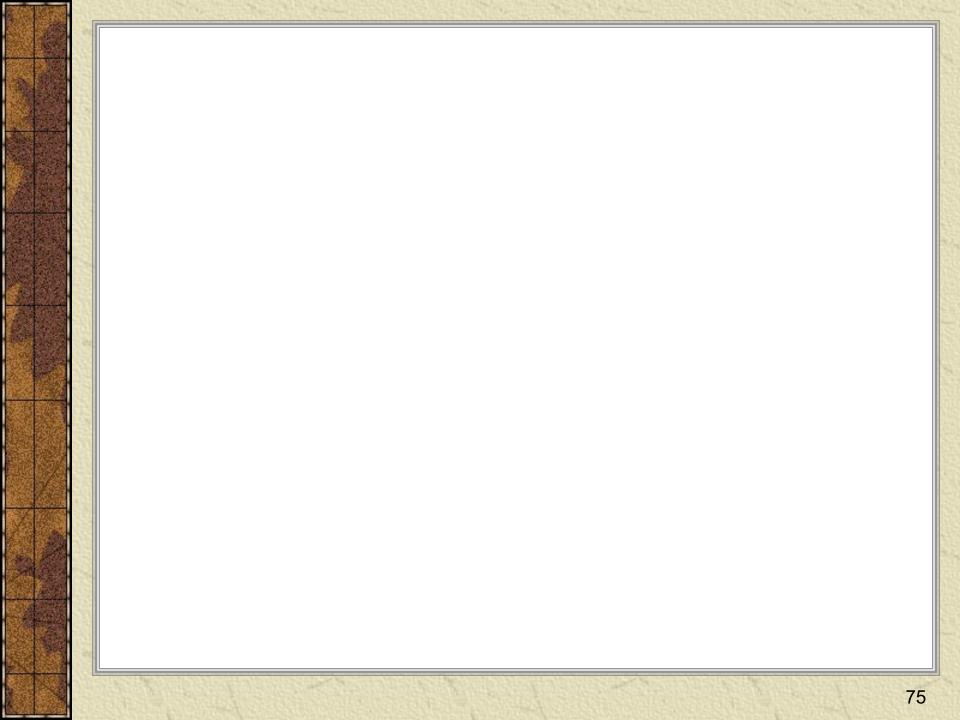
... Can only provide totals

Other suppression and concealing

Combine rows or columns to protect sensitive values

Students by Sex and Drug Use

Sex	Drug Use				
	0	1	2	3	
M	1	1	1	2	
F	2	2	2	0	


Students by Sex and Drug Use (Suppressed by combining values)

Sex	Drug Use		
	0 or 1	2 or 3	
Μ	2	3	
F	4	2	

Take a random sample (sample must be large enough to be valid)

Same sample set would be repeated for equivalent queries
 Query analysis

- Query and its implications are analyzed
- Can be difficult
- Maintain query history for each user
- ... no perfect solution to inference problem
- ... recognizing the problem leads to being defensive

* An aggregation problem exists when the aggregate of two or more data items is classified at a level higher than the least upper bound of the classification of the individual items.

The most commonly cited example is the SGA (Secretive Government Agency) phone book
[SCHA83]: The entire phone book is classified but individual numbers are not.

Aggregation policies

- Use the aggregation policy as a guide for downgrading. That is, begin by classifying all members of the aggregate at the level of the aggregate, and then downgrade as many as is consistent with the aggregation policy.
- Use the aggregation policy as a guide for relaxing security requirements. In one example, the members of the aggregate were made available only to individuals who were cleared to the level of the aggregate, but they were allowed to follow less strict policies for handling individual aggregate members. Thus, an Unclassified member of a Confidential aggregate could be stored on an Unclassified PC.
- Release individual members of an aggregate to individuals cleared at the lower level, but do not release more than a certain fixed number to any one individual. This was the policy followed in the SGA phone book example. Any individual could be given as many as *N* phone numbers, where *N* was some fixed number, but no more.

* Another possible way of handling an aggregation problem can be used when inferences may be formed by watching the ways in which data changes over time. In this case, one could prevent inferences by limiting not the amount of data an individual sees, but the amount of time during which he has access to the data.

Mechanisms to implement aggregation policies. These usually involve keeping some sort of history of each user's access, and granting or denying access to a member of the aggregate based on that history:

 In the SeaView system [LUNT89a], data is stored high and selectively downgraded according to the requester's past access history.

- In the LDV system [STAC90], data is stored low and access to it is selectively restricted based on its access by low users.
- In the Brewer-Nash model [BREW89] and its generalization by Meadows [MEAD90a], data is stored at different levels and access is granted to levels based on the past access history of the user or of a set of users. In Meadows' model, histories may also be kept of devices and other environments to which the data may be exported.

A problem closely related to aggregation and often confused with it is one commonly known as the "data association problem."

- This occurs when two data items may not be sensitive, but their association is.
- Example: names and salaries are considered nonsensitive, but the association between a name and a salary is.
- Solution: treat it as an aggregation problem; that is, to give a user access to names or to salaries, but not to both.

what is really sensitive in this case is not the combination of a list of names and a list of salaries, but the association between ndividual names and individual salaries.

Conclusion

- * We have identified various approaches to inference problems in databases.
- * We have described some of the specific inference channels that can arise, and have outlined the various approaches to eliminating them.
- We have also described some general models of the inference problem in databases, as well as some tools and methodologies that implement these models.
- * We have also presented some of the various approaches to aggregation problems, which are related to but not identical to inference problems.