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Abstract. Access control is the process of mediating every request to
resources and data maintained by a system and determining whether
the request should be granted or denied. The access control decision is
enforced by a mechanism implementing regulations established by a secu-
rity policy. Different access control policies can be applied, corresponding
to different criteria for defining what should, and what should not, be
allowed, and, in some sense, to different definitions of what ensuring se-
curity means. In this chapter we investigate the basic concepts behind
access control design and enforcement, and point out different security
requirements that may need to be taken into consideration. We discuss
several access control policies, and models formalizing them, that have
been proposed in the literature or that are currently under investigation.

1 Introduction

An important requirement of any information management system is to protect
data and resources against unauthorized disclosure (secrecy) and unauthorized
or improper modifications (integrity), while at the same time ensuring their avail-
ability to legitimate users (no denials-of-service). Enforcing protection therefore
requires that every access to a system and its resources be controlled and that
all and only authorized accesses can take place. This process goes under the
name of access control . The development of an access control system requires
the definition of the regulations according to which access is to be controlled
and their implementation as functions executable by a computer system. The
development process is usually carried out with a multi-phase approach based
on the following concepts:

Security policy: it defines the (high-level) rules according to which access con-
trol must be regulated.1

1 Often, the term policy is also used to refer to particular instances of a policy, that
is, actual authorizations and access restrictions to be enforced (e.g., Employees can
read bulletin-board).
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Security model: it provides a formal representation of the access control secu-
rity policy and its working. The formalization allows the proof of properties
on the security provided by the access control system being designed.

Security mechanism: it defines the low level (software and hardware) func-
tions that implement the controls imposed by the policy and formally stated
in the model.

The three concepts above correspond to a conceptual separation between
different levels of abstraction of the design, and provides the traditional advan-
tages of multi-phase software development. In particular, the separation between
policies and mechanisms introduces an independence between protection require-
ments to be enforced on the one side, and mechanisms enforcing them on the
other. It is then possible to: i) discuss protection requirements independently
of their implementation, ii) compare different access control policies as well as
different mechanisms that enforce the same policy, and iii) design mechanisms
able to enforce multiple policies. This latter aspect is particularly important: if
a mechanism is tied to a specific policy, a change in the policy would require
changing the whole access control system; mechanisms able to enforce multiple
policies avoid this drawback. The formalization phase between the policy defi-
nition and its implementation as a mechanism allows the definition of a formal
model representing the policy and its working, making it possible to define and
prove security properties that systems enforcing the model will enjoy [54]. There-
fore, by proving that the model is “secure” and that the mechanism correctly
implements the model, we can argue that the system is “secure” (w.r.t. the defi-
nition of security considered). The implementation of a correct mechanism is far
from being trivial and is complicated by the need to cope with possible security
weaknesses due to the implementation itself and by the difficulty of mapping the
access control primitives to a computer system. The access control mechanism
must work as a reference monitor , that is, a trusted component intercepting each
and every request to the system [5]. It must also enjoy the following properties:

– tamper-proof : it should not be possible to alter it (or at least it should not
be possible for alterations to go undetected);

– non-bypassable: it must mediate all accesses to the system and its resources;
– security kernel : it must be confined in a limited part of the system (scattering

security functions all over the system implies that all the code must be
verified);

– small : it must be of limited size to be susceptible of rigorous verification
methods.

Even the definition of access control policies (and their corresponding mod-
els) is far from being a trivial process. One of the major difficulty lies in the
interpretation of, often complex and sometimes ambiguous, real world security
policies and in their translation in well defined and unambiguous rules enforce-
able by a computer system. Many real world situations have complex policies,
where access decisions depend on the application of different rules coming, for
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example, from laws, practices, and organizational regulations. A security policy
must capture all the different regulations to be enforced and, in addition, must
also consider possible additional threats due to the use of a computer system.
Access control policies can be grouped into three main classes:

Discretionary (DAC) (authorization-based) policies control access based on
the identity of the requestor and on access rules stating what requestors are
(or are not) allowed to do.

Mandatory (MAC) policies control access based on mandated regulations de-
termined by a central authority.

Role-based (RBAC) policies control access depending on the roles that users
have within the system and on rules stating what accesses are allowed to
users in given roles.

Discretionary and role-based policies are usually coupled with (or include) an
administrative policy that defines who can specify authorizations/rules governing
access control.

In this chapter we illustrate different access control policies and models that
have been proposed in the literature, also investigating their low level imple-
mentation in terms of security mechanisms. In illustrating the literature and the
current status of access control systems, of course, the chapter does not pretend
to be exhaustive. However, by discussing different approaches with their advan-
tages and limitations, this chapter hopes to give an idea of the different issues to
be tackled in the development of an access control system, and of good security
principles that should be taken into account in the design.

The chapter is structured as follows. Section 2 introduces the basic concepts
of discretionary policies and authorization-based models. Section 3 shows the
limitation of authorization-based controls to introduce the basis for the need of
mandatory policies, which are then discussed in Section 4. Section 5 illustrates
approaches combining mandatory and discretionary principles to the goal of
achieving mandatory information flow protection without loosing the flexibility
of discretionary authorizations. Section 6 illustrates several discretionary poli-
cies and models that have been proposed. Section 7 illustrates role-based access
control policies. Finally, Section 8 discusses advanced approaches and directions
in the specification and enforcement of access control regulations.

2 Basic Concepts of Discretionary Policies

Discretionary policies enforce access control on the basis of the identity of the
requestors and explicit access rules that establish who can, or cannot, execute
which actions on which resources. They are called discretionary as users can be
given the ability of passing on their privileges to other users, where granting
and revocation of privileges is regulated by an administrative policy. Different
discretionary access control policies and models have been proposed in the liter-
ature. We start in this section with the early discretionary models, to convey the
basic ideas of authorization specifications and their enforcement. We will come



140 Pierangela Samarati and Sabrina de Capitani di Vimercati

back to discretionary policies after having dealt with mandatory controls. We
base the discussion of the “primitive” discretionary policies on the access matrix
model.

2.1 The Access Matrix Model

The access matrix model provides a framework for describing discretionary access
control. First proposed by Lampson [53] for the protection of resources within
the context of operating systems, and later refined by Graham and Denning [41],
the model was subsequently formalized by Harrison, Ruzzo, and Ullmann (HRU
model) [44], who developed the access control model proposed by Lampson to
the goal of analyzing the complexity of determining an access control policy. The
original model is called access matrix since the authorization state, meaning the
authorizations holding at a given time in the system, is represented as a matrix.
The matrix therefore gives an abstract representation of protection systems.
Although the model may seem primitive, as richer policies and languages have
been investigated subsequently (see Section 6), its treatment is useful to illustrate
some aspects to be taken into account in the formalization of an access control
system.

A first step in the development of an access control system is the identification
of the objects to be protected, the subjects that execute activities and request
access to objects, and the actions that can be executed on the objects, and that
must be controlled. Subjects, objects, and actions may be different in different
systems or application contexts. For instance, in the protection of operating
systems, objects are typically files, directories, or programs; in database systems,
objects can be relations, views, stored procedures, and so on. It is interesting to
note that subjects can be themselves objects (this is the case, for example, of
executable code and stored procedures). A subject can create additional subjects
(e.g., children processes) in order to accomplish its task. The creator subject
acquires control privileges on the created processes (e.g., to be able to suspend
or terminate its children).

In the access matrix model, the state of the system is defined by a triple
(S,O,A), where S is the set of subjects, who can exercise privileges; O is the
set of objects, on which privileges can be exercised (subjects may be considered
as objects, in which case S ⊆ O); and A is the access matrix, where rows corre-
spond to subjects, columns correspond to objects, and entry A[s, o] reports the
privileges of s on o. The type of the objects and the actions executable on them
depend on the system. By simply providing a framework where authorizations
can be specified, the model can accommodate different privileges. For instance,
in addition to the traditional read, write, and execute actions, ownership (i.e.,
property of objects by subjects), and control (to model father-children relation-
ships between processes) can be considered. Figure 1 illustrates an example of
access matrix.

Changes to the state of a system is carried out through commands that can
execute primitive operations on the authorization state, possibly depending on
some conditions. The HRU formalization identified six primitive operations that
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File 1 File 2 File 3 Program 1
own read execute

Ann read write
write

Bob read read
write

Carl read execute
read

Fig. 1. An example of access matrix

describe changes to the state of a system. These operations, whose effect on the
authorization state is illustrated in Figure 2, correspond to adding and removing
a subject, adding and removing an object, and adding and removing a privilege.
Each command has a conditional part and a body and has the form

command c(x1, . . . , xk)
if r1 in A[xs1 , xo1 ] and
r2 in A[xs2 , xo2 ] and
.
.
rm in A[xsm , xom ]

then op1
op2
.
.
opn

end.

with n > 0,m ≥ 0. Here r1, ..., rm are actions, op1, ..., opn are primitive
operations, while s1, ..., sm and o1, ..., om are integers between 1 and k. If m=0,
the command has no conditional part.

For example, the following command creates a file and gives the creating
subject ownership privilege on it.

command CREATE(creator,file)
create object file
enter Own into A[creator,file] end.

The following commands allow an owner to grant to others, and revoke ¿from
others, a privilege to execute an action on her files.

command CONFERa(owner,friend,file)
if Own in A[owner,file]

then enter a into A[friend,file] end.
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operation (op) conditions new state (Q �op Q′)

enter r into A[s, o] s ∈ S S′ = S
o ∈ O O′ = O

A′[s, o] = A[s, o] ∪ {r}
A′[si, oj ] = A[si, oj ] ∀(si, oj) �= (s, o)

delete r from A[s, o] s ∈ S S′ = S
o ∈ O O′ = O

A′[s, o] = A[s, o] \ {r}
A′[si, oj ] = A[si, oj ] ∀(si, oj) �= (s, o)

create subject s′ s′ �∈ S S′ = S ∪ {s′}
O′ = O ∪ {s′}
A′[s, o] = A[s, o] ∀s ∈ S, o ∈ O
A′[s′, o] = ∅ ∀o ∈ O′

A′[s, s′] = ∅ ∀s ∈ S′

create object o′ o′ �∈ O S′ = S
O′ = O ∪ {o′}
A′[s, o] = A[s, o] ∀s ∈ S, o ∈ O
A′[s, o′] = ∅ ∀s ∈ S′

destroy subject s′ s′ ∈ S S′ = S \ {s′}
O′ = O \ {s′}
A′[s, o] = A[s, o] ∀s ∈ S′, o ∈ O′

destroy object o′ o′ ∈ O S′ = S
o′ �∈ S O′ = O \ {o′}

A′[s, o] = A[s, o] ∀s ∈ S′, o ∈ O′

Fig. 2. Primitive operations of the HRU model

command REVOKEa(owner,ex-friend,file)
if Own in A[owner,file]

then delete a from A[ex-friend,file] end.

Note that here a is not a parameter, but an abbreviation for defining many
similar commands, one for each value that a can take (e.g., CONFERread,
REVOKEwrite). Since commands are not parametric w.r.t. actions, a different
command needs to be specified for each action that can be granted/revoked.

Let Q �op Q′ denote the execution of operation op on state Q, resulting
in state Q′. The execution of command c(a1, ..., ak) on a system state Q =
(S,O,A) causes the transition from state Q to state Q′ such that ∃ Q1, . . . , Qn

for which Q �op∗
1
Q1 �op∗

2
... �op∗

n
Qn = Q′, where op∗1 . . . op

∗
n are the primitive

operations op1 . . . opn in the body (operational part) of command c, in which
actual parameters ai are substituted for each formal parameters xi, i := 1, . . . , k.
If the conditional part of the command is not verified, then the command has
no effect and Q = Q′.

Although the HRU model does not include any buil-in administrative poli-
cies, the possibility of defining commands allows their formulation. Adminis-
trative authorizations can be specified by attaching flags to access privileges.
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For instance, a copy flag, denoted ∗, attached to a privilege may indicate that
the privilege can be transferred to others. Granting of authorizations can then
be accomplished by the execution of commands like the one below (again here
TRANSFERa is an abbreviation for as many commands as there are actions).

command TRANSFERa(subj,friend,file)
if a* in A[subj,file]

then enter a into A[friend,file] end.

The ability of specifying commands of this type clearly provides flexibility as
different administrative policies can be taken into account by defining appropri-
ate commands. For instance, an alternative administrative flag (called transfer
only and denoted +) can be supported, which gives the subject the ability of
passing on the privilege to others but for which, so doing, the subject looses
the privilege. Such a flexibility introduces an interesting problem referred to as
safety, and concerned with the propagation of privileges to subjects in the sys-
tem. Intuitively, given a system with initial configuration Q, the safety problem
is concerned with determining whether or not a given subject s can ever acquire
a given access a on an object o, that is, if there exists a sequence of requests
that executed on Q can produce a state Q′ where a appears in a cell A[s, o]
that did not have it in Q. (Note that, of course, not all leakages of privileges
are bad and subjects may intentionally transfer their privileges to “trusworthy”
subjects. Trustworthy subjects are therefore ignored in the analysis.) It turns
out that the safety problem is undecidable in general (it can be reduced to
the halting problem of a Turing machine) [4]. It remains instead decidable for
cases where subjects and objects are finite, and in mono-operational systems,
that is, systems where the body of commands can have at most one opera-
tion (while the conditional part can still be arbitrarily complex). However, as
noted in [81], mono-operational systems have the limitation of making create
operations pretty useless: a single create command cannot do more than adding
an empty row/column (it cannot write anything in it). It is therefore not possi-
ble to support ownership or control relationships between subjects. Progresses in
safety analysis were made in a later extension of the HRU model by Sandhu [81],
who proposed the TAM (Typed Access Matrix) model. TAM extends HRU with
strong typing: each subject and object has a type; the type is associated with the
subjects/objects when they are created and thereafter does not change. Safety
results decidable in polynomial time for cases where the system is monotonic
(privileges cannot be deleted), commands are limited to three parameters, and
there are no cyclic creates. Safety remains undecidable otherwise.

2.2 Implementation of the Access Matrix

Although the matrix represents a good conceptualization of authorizations, it
is not appropriate for implementation. In a general system, the access matrix
will be usually enormous in size and sparse (most of its cells are likely to be
empty). Storing the matrix as a two-dimensional array is therefore a waste of
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memory space. There are three approaches to implementing the access matrix
in a practical way:

Authorization Table Non empty entries of the matrix are reported in a ta-
ble with three columns, corresponding to subjects, actions, and objects, re-
spectively. Each tuple in the table corresponds to an authorization. The
authorization table approach is generally used in DBMS systems, where au-
thorizations are stored as catalogs (relational tables) of the database.

Access Control List (ACL) The matrix is stored by column. Each object is
associated with a list indicating, for each subject, the actions that the subject
can exercise on the object.

Capability The matrix is stored by row. Each user has associated a list, called
capability list, indicating, for each object, the accesses that the user is allowed
to exercise on the object.

Figure 3 illustrates the authorization table, ACLs, and capabilities, respec-
tively, corresponding to the access matrix in Figure 1.

Capabilities and ACLs present advantages and disadvantages with respect
to authorization control and management. In particular, with ACLs it is imme-
diate to check the authorizations holding on an object, while retrieving all the
authorizations of a subject requires the examination of the ACLs for all the ob-
jects. Analogously, with capabilities, it is immediate to determine the privileges
of a subject, while retrieving all the accesses executable on an object requires the
examination of all the different capabilities. These aspects affect the efficiency
of authorization revocation upon deletion of either subjects or objects.

In a system supporting capabilities, it is sufficient for a subject to present
the appropriate capability to gain access to an object. This represents an advan-
tage in distributed systems since it permits to avoid repeated authentication of
a subject: a user can be authenticated at a host, acquire the appropriate capa-
bilities and present them to obtain accesses at the various servers of the system.
However, capabilities are vulnerable to forgery (they can be copied and reused
by an unauthorized third party). Another problem in the use of capability is the
enforcement of revocation, meaning invalidation of capabilities that have been
released.

A number of capability-based computer systems were developed in the 1970s,
but did not prove to be commercially successful. Modern operating systems
typically take the ACL-based approach. Some systems implement an abbreviated
form of ACL by restricting the assignment of authorizations to a limited number
(usually one or two) of named groups of users, while individual authorizations are
not allowed. The advantage of this is that ACLs can be efficiently represented as
small bit-vectors. For instance, in the popular Unix operating system, each user
in the system belongs to exactly one group and each file has an owner (generally
the user who created it), and is associated with a group (usually the group of
its owner). Authorizations for each file can be specified for the file’s owner, for
the group to which the file belongs, and for “the rest of the world” (meaning
all the remaining users). No explicit reference to users or groups is allowed.
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User Access mode Object

Ann own File 1

Ann read File 1

Ann write File 1

Ann read File 2

Ann write File 2

Ann execute Program 1

Bob read File 1

Bob read File 3

Bob write File 3

Carl read File 2

Carl execute Program 1

Carl read Program 1

�
�
�
�

����

����

File 1 Ann

own
read
write

Ann

read

Bob

CarlFile 2

File 3

write
read

read

read

write

Ann

execute read
execute

CarlProgram 1

Bob

Program 1

execute

�
�
�
�

����

����

��
��
��
��

own
read
write

File 1 File 2

read
write

File 1

read
writeread

File 3

File 2

read

Ann

Bob

Carl Program 1

execute
read

Fig. 3. Authorization table, ACLs, and capabilities for the matrix in Figure 1

Authorizations are represented by associating with each object an access control
list of 9 bits: bits 1 through 3 reflect the privileges of the file’s owner, bits
4 through 6 those of the user group to which the file belongs, and bits 7 through
9 those of all the other users. The three bits correspond to the read (r), write (w),
and execute (x) privilege, respectively. For instance, ACL rwxr-x--x associated
with a file indicates that the file can be read, written, and executed by its owner,
read and executed by users belonging to the group associated with the file, and
executed by all the other users.
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3 Vulnerabilities of the Discretionary Policies

In defining the basic concepts of discretionary policies, we have referred to ac-
cess requests on objects submitted by users, which are then checked againsts the
users’ authorizations. Although it is true that each request is originated because
of some user’s actions, a more precise examination of the access control problem
shows the utility of separating users from subjects. Users are passive entities
for whom authorizations can be specified and who can connect to the system.
Once connected to the system, users originate processes (subjects) that execute
on their behalf and, accordingly, submit requests to the system. Discretionary
policies ignore this distinction and evaluate all requests submitted by a process
running on behalf of some user against the authorizations of the user. This as-
pect makes discretionary policies vulnerable from processes executing malicious
programs exploiting the authorizations of the user on behalf of whom they are
executing. In particular, the access control system can be bypassed by Trojan
Horses embedded in programs. A Trojan Horse is a computer program with an
apparently or actually useful function, which contains additional hidden func-
tions that surreptitiously exploit the legitimate authorizations of the invoking
process. (Viruses and logic bombs are usually transmitted as Trojan Horses.)
A Trojan Horse can improperly use any authorizations of the invoking user, for
example, it could even delete all files of the user (this destructive behavior is not
uncommon in the case of viruses). This vulnerability to Trojan Horses, together
with the fact that discretionary policies do not enforce any control on the flow of
information once this information is acquired by a process, makes it possible for
processes to leak information to users not allowed to read it. All this can happen
without the cognizance of the data administrator/owner, and despite the fact
that each single access request is controlled against the authorizations. To un-
derstand how a Trojan Horse can leak information to unauthorized users despite
the discretionary access control, consider the following example. Assume that
within an organization, Vicky, a top-level manager, creates a file Market con-
taining important information about releases of new products. This information
is very sensitive for the organization and, according to the organization’s policy,
should not be disclosed to anybody besides Vicky. Consider now John, one of
Vicky’s subordinates, who wants to acquire this sensitive information to sell it
to a competitor organization. To achieve this, John creates a file, let’s call it
Stolen, and gives Vicky the authorization to write the file. Note that Vicky may
not even know about the existence of Stolen, or about the fact that she has the
write authorization on it. Moreover, John modifies an application generally used
by Vicky, to include two hidden operations, a read operation on file Market and
a write operation on file Stolen (Figure 4(a)). Then, he gives the new applica-
tion to his manager. Suppose now that Vicky executes the application. Since the
application executes on behalf of Vicky, every access is checked against Vicky’s
authorizations, and the read and write operations above are allowed. As a result,
during execution, sensitive information in Market is transferred to Stolen and
thus made readable to the dishonest employee John, who can then sell it to the
competitor (Figure 4(b)). The reader may object that there is little point in
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Aug. 00; product X; price 7,000

Dec. 00; product Y; price 3,500

Jan. 01; product Z; price 1,200

read Market

write Stolen

File Market

Application

File Stolen

owner Vicky owner John
〈 Vicky,write,Stolen 〉

(a)

Aug. 00; product X; price 7,000

Dec. 00; product Y; price 3,500

Jan. 01; product Z; price 1,200

read Market

write Stolen

✑
✑

✑
✑

✑
✑

✑
✑✰

◗
◗

◗
◗

◗◗�

Aug. 00; product X; price 7,000

Dec. 00; product Y; price 3,500

Jan. 01; product Z; price 1,200

File Market

Vicky ✲invokes
Application

File Stolen

owner Vicky owner John
〈 Vicky,write,Stolen 〉

(b)

Fig. 4. An example of Trojan Horse improperly leaking information
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defending against Trojan Horses leaking information flow: such an information
flow could have happened anyway, by having Vicky explicitly tell this informa-
tion to John, possibly even off-line, without the use of the computer system.
Here is where the distinction between users and subjects operating on their be-
half comes in. While users are trusted to obey the access restrictions, subjects
operating on their behalf are not . With reference to our example, Vicky is trusted
not to release the sensitive information she knows to John, since, according to
the authorizations, John cannot read it. However, the processes operating on
behalf of Vicky cannot be given the same trust. Processes run programs which,
unless properly certified, cannot be trusted for the operations they execute. For
this reason, restrictions should be enforced on the operations that processes
themselves can execute. In particular, protection against Trojan Horses leaking
information to unauthorized users requires controlling the flows of information
within processes execution and possibly restricting them. Mandatory policies
provide a way to enforce information flow control through the use of labels.

4 Mandatory Policies

Mandatory security policies enforce access control on the basis of regulations
mandated by a central authority. The most common form of mandatory policy
is the multilevel security policy, based on the classifications of subjects and ob-
jects in the system. Objects are passive entities storing information. Subjects
are active entities that request access to the objects. Note that there is a dis-
tinction between subjects of the mandatory policy and the authorization subjects
considered in the discretionary policies. While authorization subjects typically
correspond to users (or groups thereof), mandatory policies make a distinction
between users and subjects . Users are human beings who can access the system,
while subjects are processes (i.e., programs in execution) operating on behalf of
users. This distinction allows the policy to control the indirect accesses (leakages
or modifications) caused by the execution of processes.

4.1 Security Classifications

In multilevel mandatory policies, an access class is assigned to each object and
subject. The access class is one element of a partially ordered set of classes.
The partial order is defined by a dominance relationship, which we denote with
≥. While in the most general case, the set of access classes can simply be any
set of labels that together with the dominance relationship defined on them
form a POSET (partially ordered set), most commonly an access class is defined
as consisting of two components: a security level and a set of categories. The
security level is an element of a hierarchically ordered set, such as Top Secret
(TS), Secret (S), Confidential (C), and Unclassified (U), where TS > S > C > U.
The set of categories is a subset of an unordered set, whose elements reflect
functional, or competence, areas (e.g., NATO, Nuclear, and Army, for military
systems; Financial, Administration, and Research, for commercial systems). The
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TS,{Army,Nuclear}

TS,{Army} TS,{Nuclear}

TS,{ }

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟

S,{Army,Nuclear}

S,{Army} S,{Nuclear}

S,{ }

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟

Fig. 5. An example of security lattice

dominance relationship ≥ is then defined as follows: an access class c1 dominates
(≥) an access class c2 iff the security level of c1 is greater than or equal to that
of c2 and the categories of c1 include those of c2. Formally, given a totally ordered
set of security levels L, and a set of categories C, the set of access classes is AC =
L × ℘(C)2, and ∀c1 = (L1, C1), c2 = (L2, C2) : c1 ≥ c2 ⇐⇒ L1 ≥ L2 ∧ C1 ⊇ C2.
Two classes c1 and c2 such that neither c1 ≥ c2 nor c2 ≥ c1 holds are said to be
incomparable.

It is easy to see that the dominance relationship so defined on a set of access
classes AC satisfies the following properties.

– Reflexivity: ∀x ∈ AC : x ≥ x
– Transitivity: ∀x, y, z ∈ AC : x ≥ y, y ≥ z =⇒ x ≥ z
– Antisymmetry: ∀x, y ∈ AC : x ≥ y, y ≥ x =⇒ x = y
– Existence of a least upper bound: ∀x, y ∈ AC : ∃ !z ∈ AC

• z ≥ x and z ≥ y
• ∀t ∈ AC : t ≥ x and t ≥ y =⇒ t ≥ z.

– Existence of a greatest lower bound: ∀x, y ∈ AC : ∃ !z ∈ AC
• x ≥ z and y ≥ z
• ∀t ∈ AC : x ≥ t and y ≥ t =⇒ z ≥ t.

Access classes defined as above together with the dominance relationship
between them therefore form a lattice [31]. Figure 5 illustrates the security lattice
obtained considering security levels TS and S, with TS>S and the set of categories
{Nuclear,Army}.

The semantics and use of the classifications assigned to objects and subjects
within the application of a multilevel mandatory policy is different depending
on whether the classification is intended for a secrecy or an integrity policy. We
next examine secrecy-based and integrity-based mandatory policies.
2 ℘(C) denotes the powerset of C.
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4.2 Secrecy-Based Mandatory Policies

A secrecy mandatory policy controls the direct and indirect flows of informa-
tion to the purpose of preventing leakages to unauthorized subjects. Here, the
semantics of the classification is as follows. The security level of the access class
associated with an object reflects the sensitivity of the information contained
in the object, that is, the potential damage that could result from the unau-
thorized disclosure of the information. The security level of the access class
associated with a user, also called clearance, reflects the user’s trustworthiness
not to disclose sensitive information to users not cleared to see it. Categories
define the area of competence of users and data and are used to provide finer
grained security classifications of subjects and objects than classifications pro-
vided by security levels alone. They are the basis for enforcing need-to-know
restrictions (i.e., confining subjects to access information they actually need to
know to perform their job).

Users can connect to the system at any access class dominated by their clear-
ance. A user connecting to the system at a given access class originates a subject
at that access class. For instance, with reference to the lattice in Figure 5, a user
cleared (TS,{Nuclear}) can connect to the system as a (S,{Nuclear}), (TS,∅),
or (TS,∅) subject. Requests by a subject to access an object are controlled with
respect to the access class of the subject and the object and granted only if
some relationship, depending on the requested access, is satisfied. In particular,
two principles, first formulated by Bell and LaPadula [12], must be satisfied to
protect information confidentiality:

No-read-up A subject is allowed a read access to an object only if the access
class of the subject dominates the access class of the object.

No-write-down A subject is allowed a write access to an object only if the
access class of the subject is dominated by the access class of the object.

Satisfaction of these two principles prevents information to flow from high
level subjects/objects to subjects/objects at lower (or incomparable) levels,
thereby ensuring the satisfaction of the protection requirements (i.e., no pro-
cess will be able to make sensitive information available to users not cleared for
it). This is illustrated in Figure 6, where four accesses classes composed only of
a security level (TS, S, C, and U) are taken as example. Note the importance of
controlling both read and write operations, since both can be improperly used
to leak information. Consider the example on the Trojan Horse illustrated in
Section 3. Possible classifications reflecting the access restrictions to be enforced
could be: Secret for Vicky and Market, and Unclassified for John and Stolen. In
the respect of the no-read-up and no-write-down principles, the Trojan Horse
will never be able to complete successfully. If Vicky connects to the system as
a Secret (or Confidential) subject, and thus the application runs with a Secret (or
Confidential) access class, the write operation will be blocked. If Vicky invokes
the application as an Unclassified subject, the read operation will be blocked
instead.
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Fig. 6. Information flow for secrecy

Given the no-write-down principle, it is clear now why users are allowed
to connect to the system at different access classes, so that they are able to
access information at different levels (provided that they are cleared for it). For
instance, Vicky has to connect to the system at a level below her clearance if she
wants to write some Unclassified information, such as working instructions for
John. Note that a lower class does not mean “less” privileges in absolute terms,
but only less reading privileges (see Figure 6).

Although users can connect to the system at any level below their clearance,
the strict application of the no-read-up and the no-write-down principles may
result too rigid. Real world situations often require exceptions to the mandatory
restrictions. For instance, data may need to be downgraded (e.g., data subject
to embargoes that can be released after some time). Also, information released
by a process may be less sensitive than the information the process has read. For
instance, a procedure may access personal information regarding the employees
of an organization and return the benefits to be granted to each employee. While
the personal information can be considered Secret, the benefits can be considered
Confidential. To respond to situations like these, multilevel systems should then
allow for exceptions, loosening or waiving restrictions, in a controlled way, to
processes that are trusted and ensure that information is sanitized (meaning the
sensitivity of the original information is lost).

Note also that DAC and MAC policies are not mutually exclusive, but can
be applied jointly. In this case, an access to be granted needs both i) the ex-
istence of the necessary authorization for it, and ii) to satisfy the mandatory
policy. Intuitively, the discretionary policy operates within the boundaries of the
mandatory policy: it can only restrict the set of accesses that would be allowed
by MAC alone.
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4.3 The Bell-LaPadula Model (Some History)

The secrecy based control principles just illustrated summarize the basic axioms
of the security model proposed by David Bell and Leonard LaPadula [12]. Here,
we illustrate some concepts of the model formalization to give an idea of the
different aspects to be taken into account in the definition of a security model.
This little bit of history is useful to understand the complications of formalizing
a policy and making sure that the policy’ axioms actually ensure protection as
intended. We note first that different versions of the model have been proposed
(due to the formalization of new properties [10,12,55], or related to specific ap-
plication environments [11]), however the basic principles remain the same (and
are those illustrated in the previous section). Also, here we will be looking only
at the aspects of the formalization needed to illustrate the concepts we want to
convey: for the sake of simplicity, the formulation of the model is simplified and
some aspects are omitted.

In the Bell and LaPadula model a system is composed of a set of subjects S,
objects O, and actions A, which includes read and write3. The model also
assumes a lattice L of access classes and a function λ : S ∪ O → L that, when
applied to a subject (object, resp.) in a given state, returns the classification of
the subject (object, resp.) in that state. A state v ∈ V is defined as a triple
(b,M, λ), where b ∈ ℘(S × O × A) is the set of current accesses (s, o, a), M is
the access matrix expressing discretionary permissions (as in the HRU model),
and λ is the association of access classes with subjects and objects. A system
consists of an initial state v0, a set of requests R, and a state transition function
T : V ×R→ V that transforms a system state into another state resulting from
the execution of a request. Intuitively, requests capture acquisition and release of
accesses, granting and revocation of authorizations, as well as changes of levels.
The model then defines a set of axioms stating properties that the system must
satisfy and that express the constraints imposed by the mandatory policy. The
first version of the Bell and LaPadula model stated the following criteria.

simple property A state v satisfies the simple security property iff for every
s ∈ S, o ∈ O: (s, o, read) ∈ b =⇒ λ(s) ≥ λ(o).

*-property A state v satisfies the *-security property iff for every s ∈ S, o ∈ O:
(s, o, write) ∈ b =⇒ λ(o) ≥ λ(s).

The two axioms above correspond to the no-read-up and no-write-down prin-
ciples we have illustrated in Section 4.2. A state is then defined to be secure
if it satisfies both the simple security property and the *-property. A system
(v0, R, T ) is secure if and only if every state reachable from v0 by executing one
or more finite sequences of requests from R is state secure.

In the first formulation of their model, Bell and LaPadula provide a Basic
Security Theorem (BST), which states that a system is secure if i) its initial

3 For uniformity of the discussion, we use the term “write” here to denote the “write-
only” (or “append”) action.
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state v0 is secure, and ii) the state transition T is security preserving, that is, it
transforms a secure state into another secure state.

As noticed by McLean in his example called “System Z” [63], the BST the-
orem does not actually guarantee security. The problem lies in the fact that no
restriction, but to be preserving of state security, is put on transitions. In his
System Z example, McLean shows how failing to control transitions can com-
promise security. Consider a system Z whose initial state is secure and that has
only one type of transition: when a subject requests any type of access to an
object o, every subject and object in the system are downgraded to the lowest
possible access class and the access is granted. System Z satisfies the Bell and
LaPadula notion of security, but it is obviously not secure in any meaningful
sense. The problem pointed out by System Z is that transitions need to be con-
trolled. Accordingly, McLean proposes extending the model with a new function
C : S ∪O → ℘(S), which returns the set of subjects allowed to change the level
of its argument. A transition is secure if it allows changes to the level of a sub-
ject/object x only by subjects in C(x); intuitively, these are subjects trusted for
downgrading. A system (v0, R, T ) is secure if and only if i) v0 is secure, ii) every
state reachable from v0 by executing a finite sequence of one or more requests
from R is (BLP) secure, and iii) T is transition secure.

The problem with changing the security level of subjects and objects was
not captured formally as an axiom or property in the Bell and LaPadula, but as
an informal design guidance called tranquility principle. The tranquility princi-
ple states that the classification of active objects should not be changed during
normal operation [55]. A subsequent revision of the model [10] introduced a dis-
tinction between the level assigned to a subject (clearance) and its current level
(which could be any level dominated by the clearance), which also implied chang-
ing the formulation of the axioms, introducing more flexibility in the control.

Another property included in the Bell and LaPadula model is the discre-
tionary property which constraints the set of current accesses b to be a subset of
the access matrix M . Intuitively, it enforces discretionary controls.

4.4 Integrity-based Mandatory Policies: The Biba Model

The mandatory policy that we have discussed above protects only the confiden-
tiality of the information; no control is enforced on its integrity. Low classified
subjects could still be able to enforce improper indirect modifications to objects
they cannot write. With reference to our organization example, for instance,
integrity could be compromised if the Trojan Horse implanted by John in the
application would write data in file Market (this operation would not be blocked
by the secrecy policy). Starting from the principles of the Bell and LaPadula
model, Biba [16] proposed a dual policy for safeguarding integrity, which con-
trols the flow of information and prevents subjects to indirectly modify informa-
tion they cannot write. Like for secrecy, each subject and object in the system
is assigned an integrity classification. The classifications and the dominance re-
lationship between them are defined as before. Example of integrity levels can
be: Crucial (C), Important (I), and Unknown (U). The semantics of integrity
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Fig. 7. Information flow for integrity

classifications is as follows. The integrity level associated with a user reflects
the user’s trustworthiness for inserting, modifying, or deleting information. The
integrity level associated with an object reflects both the degree of trust that
can be placed on the information stored in the object and the potential damage
that could result from unauthorized modifications of the information. Again,
categories define the area of competence of users and data. Access control is
enforced according to the following two principles:

No-read-down A subject is allowed a read access to an object only if the access
class of the object dominates the access class of the subject.

No-write-up A subject is allowed a write access to an object only if the access
class of the subject is dominated by the access class of the object.

Satisfaction of these principles safeguard integrity by preventing information
stored in low objects (and therefore less reliable) to flow to higher, or incom-
parable, objects. This is illustrated in Figure 7, where classes composed only of
integrity levels (C,I, and U) are taken as example.

The two principles above are the dual of the two principles formulated by
Bell and LaPadula. Biba’s proposal also investigated alternative criteria for safe-
guarding integrity, allowing for more dynamic controls. These included the fol-
lowing two policies.

Low-water mark for subjects It constraints write operations according to
the no-write-up principle. No restriction is imposed on read operations.
However, a subject s that reads an object o has its classification down-
graded to the greatest lower bound of the classification of the two, that is,
λ′(s) = glb(λ(s), λ(o)).

Low-water mark for objects It constraints read operations according to the
no-read-down principle. No restriction is imposed on write operations. How-
ever, if a subject s writes an object o, the object has its classification down-
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graded to the greatest lower bound of the classification of the two, that is,
λ′(o) = glb(λ(s), λ(o)).

Intuitively, the two policies attempt to apply a more dynamic behavior in the
enforcement of the constraints. The two approaches suffer however of drawbacks.
In the low-water mark for subjects approach, the ability of a subject to execute
a procedure may depend on the order with which operations are requested:
a subject may be denied the execution of a procedure because of read operations
executed before. The latter policy cannot actually be considered as safeguarding
integrity: given that subjects are allowed to write above their level, integrity
compromises can certainly occur; by downgrading the level of the object the
policy simply signals this fact.

As it is visible from Figures 6 and 7, secrecy policies allow the flow of informa-
tion only from lower to higher (secrecy) classes while integrity policies allow the
flow of information only from higher to lower (integrity) classes. If both secrecy
and integrity have to be controlled, objects and subjects have to be assigned two
access classes, one for secrecy control and one for integrity control.

A major limitation of the policies proposed by Biba is that they only capture
integrity compromises due to impoproper information flows. However, integrity
is a much broader concept and additional aspects should be taken into account
(see Section 6.5).

4.5 Applying Mandatory Policies to Databases

The first formulation of the multilevel mandatory policies, and the Bell LaPadula
model, simply assumed the existence of objects (information container) to which
a classification is assigned. This assumption works well in the operating system
context, where objects to be protected are essentially files containing the data.
Later studies investigated the extension of mandatory policies to database sys-
tems. While in operating systems access classes are assigned to files, database
systems can afford a finer-grained classification. Classification can in fact be con-
sidered at the level of relations (equivalent to file-level classification in OS), at
the level of columns (different properties can have a different classification), at
the level of rows (properties referred to a given real world entity or association
have the same classification), or at the level of single cells (each data element,
meaning the value assigned to a property for a given entity or association, can
have a different classification), this latter being the finest possible classification.
Early efforts to classifying information in database systems, considered classifi-
cation at the level of each single element [50,61]. Element-level classification is
clearly appealing since it allows the assignment of a security class to each single
real world fact that needs to be represented. For instance, an employee’s name
can be labeled Unclassified, while his salary can be labeled Secret; also the salary
of different employees can take on different classifications. However, the support
of fine-grained classifications together with the obvious constraint of maintaining
secrecy in the system operation introduces complications. The major complica-
tion is represented by the so called polyinstantiation problem [49,60], which is
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Sam U Dept1 U – U

(b)

Fig. 8. An example of multilevel relation (a) and the unclassified view on it (b)

probably one of the main reasons why multilevel databases did not have much
success. Generally speaking, polyinstantiation is the presence in the system of
multiple instances of the same real world fact or entity, where the instances differ
for the access class associated with them.

To illustrate the problem, let us start giving the definition of multilevel re-
lational database. A relational database is composed of a finite set of relations,
each defined over a set of attributes A1, . . . , An (columns of the relation). Each
relation is composed of a set of tuples t1, . . . , tk (rows of the relation) mapping
attributes to values over their domain. A subset of the attributes, called key
attributes, are used to uniquely identify each tuple in the relation, and the fol-
lowing key constraints are imposed: i) no two tuples can have the same values
for the key attributes, and ii) key attributes cannot be null. In a multilevel
relational database supporting element-level labeling, an access class λ(t[A]) is
associated with each element t[A] in a relation. An example of multilevel relation
is illustrated in Figure 8(a). Note that the classification associated with a value
does not represent the absolute sensitivity of the value as such, but rather the
sensitivity of the fact that the attribute takes on that value for a specific entity
in the real world. For instance, classification Secret associated with value 150K
of the last tuple is not the classification of value 150K by itself, but of the fact
that it is the salary of Sam.4

Access control in multilevel DBMSs applies the two basic principles discussed
in Section 4.2, although the no-write-up restriction is usually reduced to the prin-
ciple of “write at their own level”. In fact, while write-up operations can make
sense in operating systems, where a file is seen as an information container and
subjects may need to append low-level data in a high-level container, element-
level classification nullifies this reasoning.

Subjects at different levels have different views on a relation, which is the view
composed only of elements they are cleared to see (i.e., whose classification they
dominate). For instance, the view of an Unclassified subject on the multilevel
relation in Figure 8(a) is the table in Figure 8(b). Note that, in principle, to not
convey information, the Unclassified subject should see no difference between
values that are actually null in the database and those that are null since they
4 Note that this is not meant to say that the classification of an element is independent
of its value. As a matter of fact it can depend on the value; for instance a classification
rule may state that all salaries above 100K must be classified as Secret [30].
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Ann U Dept1 U 100K U

Sam U Dept1 U 100K U

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Ann U Dept1 U 100K U

Sam U Dept1 U 100K U

(b)

Fig. 9. An example of a relation with polyinstantiation (a) and the unclassified
view on it (b)

have a higher classification.5 To produce a view consistent with the relational
database constraints the classification needs to satisfy at least the following two
basic constraints: i) the key attributes must be uniformly classified, and ii) the
classifications of nonkey attributes must dominate that of key attributes. If it
were not so, the view at some levels would contain a null value for some or all
key attributes (and therefore would not satisfy the key constraints).

To see how polyinstantiation can arise, suppose that an Unclassified subject,
whose view on the table in Figure 8(a) is as illustrated in Figure 8(b), requests
insertion of tuple (Ann, Dept1, 100K). According to the key constraints im-
posed by the relational model, no two tuples can have the same value for the
key attributes. Therefore if classifications were not taken into account, the in-
sertion could have not been accepted. The database could have two alternative
choices: i) tell the subject that a tuple with the same key already exists, or ii)
replace the old tuple with the new one. The first solution introduces a covert
channel6, since by rejecting the request the system would be revealing protected
information (meaning the existence of a Secret entity named Ann), and clearly
compromises secrecy. On the other hand, the second solution compromises in-
tegrity, since high classified data would be lost, being overridden by the newly
inserted tuple. Both solutions are therefore inapplicable. The only remaining so-
lution would then be to accept the insertion and manage the presence of both
tuples (see Figure 9(a)). Two tuples would then exist with the same value, but
different classification, for their key (polyinstantiated tuples). A similar situation
happens if the unclassified subject requests to update the salary of Sam to value
100K. Again, telling the subject that a value already exists would compromise
secrecy (if the subject is not suppose to distinguish between real nulls and values
for which it does not have sufficient clearance), while overwriting the existing
Secret value would compromise integrity (as the Secret salary would be lost).

5 Some proposals do not adopt this assumption. For instance, in LDV [43], a special
value “restricted” appears in a subject’s view to denote the existence of values not
visible to the subject.

6 We will talk more about covert channels in Section 4.6.
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Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Bob S Dept2 S 200K S

Jim U Dept1 U 150K S

(a)

Name λN Dept λD Salary λS

Bob U Dept1 U 100K U

Jim U Dept1 U 100K U

Sam U Dept1 U – U

(b)

Fig. 10. An example of a relation with polyinstantiation (a) and the unclassified
view on it (b)

The only remaining solution would therefore seem to be to accept the insertion
(Figure 9(a)), implying then the existence of two tuples with the same value and
classification for their key, but with different value and classification for one of
their attributes (polyinstantiated elements). Note that, when producing the view
visible to a subject in the presence of polyinstantiation, the DBMS must com-
pletely hide those tuples with high polyinstiated values that the subject cannot
see. For instance, an unclassified subject querying the relation in Figure 9(a) will
see only one tuple for Ann and Sam (see Figure 9(b)).

Polyinstantiation can also occur because of requests by high level subjects.
For instance, consider again the relation in Figure 8(a) and assume a Secret sub-
ject requests to insert tuple (Bob, Dept2, 200K). A tuple with key Bob already
exists at level Unclassified. If key uniqueness is to be preserved, the system can ei-
ther i) inform the subject of the conflict and refuse the insertion, or ii) overwrite
the existing tuple. Again, the solution of refusing insertion is not advisable: al-
though it would not leak protected information, it introduces denials-of-service,
since high level subjects would not be allowed to insert data. The second solution
also is not viable since it would introduce a covert channel due to the effect that
the overwriting would have on the view of lower level subjects (which would see
the Unclassified tuple disappear). Again, the only possible solution seems to be
to accept the insertion and have the two (polyinstantiated) tuples coexist (see
Figure 10(a)). A similar problem would arise at the attribute level, for update
operations. For instance, if a secret subject requires updating Jim’s salary to
150K, polyinstantiated elements would be introduced (see Figure 10(a)).

Earlier work in multilevel database systems accepted polyinstantiation as
an inevitable consequence of fine-grained classification and attempted to clarify
the semantics of the database states in the presence of polyinstantiation [50,61].
For instance, the presence of two tuples with the same value, but different clas-
sification, for the primary key (tuple polyinstantiation) can be interpreted as
the existence of two different entities of the real world (one of which is known
only at a higher level). The presence of two tuples with the same key and same
key classification but that differ for the value and classification of some of its at-
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tributes can be interpreted as a single real world entity for which different values
are recorded (corresponding to the different beliefs at different levels). However,
unfortunately, polyinstantiation quickly goes out of hand, and the execution of
few operations could result in a database whose semantics does not appear clear
anymore. Subsequent work tried to establish constraints to maintain semantic
integrity of the database status [69,75,90]. However, probably because of all the
complications and semantics confusion that polyinstantiation bears, fine-grained
multilevel databases did not have much success, and current DBMSs do not sup-
port element-level classification. Commercial systems (e.g., Trusted Oracle [66]
and SYBASE Secure SQL Server) support tuple level classification.

It is worth noticing that, although polyinstantiation is often blamed to be the
reason why multilevel relational databases did not have success, polyinstantia-
tion is not necessarily always bad. Controlled polyinstantiation may, for example,
be useful to support cover stories [38,49], meaning non-true data whose presence
in the database is meant to hide the existence of the actual value. Cover stories
are useful when the fact that a given data is not released is by itself a cause
of information leakage. For instance, suppose that a subject requires access to
a hospital’s data and the hospital returns, for all its patients, but for few of
them, the illness for which they are being cured. Suppose also that HIV never
appears as an illness value. Observing this, the recipient may infer that it is
probably the case that the patients for which illness is not disclosed suffer from
HIV. The hospital could have avoided exposure to such an inference by simply
releasing a non-true alternative value (cover story) for these patients. Intuitively,
cover stories are “lies” that the DBMS says to uncleared subjects not to disclose
(directly or indirectly) the actual values to be protected. We do note that, while
cover stories are useful for protection, they have raise objections for the possible
integrity compromises which they may indirectly cause, as low level subjects can
base their actions on cover stories they believe true.

A complicating aspects in the support of a mandatory policy at a fine-grained
level is that the definition of the access class to be associated with each piece
of data is not always easy [30]. This is the case, for example, of association and
aggregation requirements, where the classification of a set of values (properties,
resp.) is higher than the classification of each of the values singularly taken.
As an example, while names and salaries in an organization may be considered
Unclassified, the association of a specific salary with an employee’s name can be
considered Secret (association constraint). Similarly, while the location of a sin-
gle military ship can be Unclassified, the location of all the ships of a fleet can
be Secret (aggregation constraint), as by knowing it one could infer that some
operations are being planned. Proper data classification assignment is also com-
plicated by the need to take into account possible inference channels [30,47,59].
There is an inference channel between a set of data x and a set of data y if, by
knowing x a user can infer some information on y (e.g., an inference channel can
exist between an employee’s taxes and her salary). Inference-aware classification
requires that no information x be classified at a level lower (or incomparable)
than the level of the information y that can be inferred from it. Capturing and
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Fig. 11. Multilevel DBMSs architectures

blocking all inference channels is a complex process, also because of the intrinsic
difficulty of detecting all the semantics relationships between the data that can
cause inference channels.

An interesting point that must be taken into account in multilevel database
systems is the system architecture, which is concerned with the need of confining
subjects accessing a multilevel database to the data that can be made visible to
them. This problem comes out in any data system where classification has a finer
granularity than the stored objects (e.g., multilevel object-oriented systems).
Two possible approaches are [68]:

– Trusted subject: data at different levels are stored in a single database (Fig-
ure 11(a)). The DBMS itself must be trusted to ensure obedience of the
mandatory policy (i.e., subjects will not gain access to data whose classifi-
cation they do not dominate).

– Trusted computing base: data are partitioned in different databases, one for
each level (Figure 11(b)). In this case only the operating system needs to be
trusted since every DBMS will be confined to data which subjects using that
DBMS can access. Decomposition and recovery algorithms must be carefully
constructed to be correct and efficient [33].

4.6 Limitations of Mandatory Policies

Although mandatory policies, unlike discretionary ones, provide protection
against indirect information leakages they do not guarantee complete secrecy of
the information. In fact, secrecy mandatory policies (even with tranquility) con-
trol only overt channels of information (i.e., flow through legitimate channels);
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they still remain vulnerable to covert channels . Covert channels are channels
that are not intended for normal communication, but still can be exploited to
infer information. For instance, consider the request of a low level subject to
write a non-existent high level file (the operation is legitimate since write-up
operations are allowed). Now, if the system returns the error, it exposes itself to
improper leakages due to malicious high level processes creating and destroying
the high level file to signal information to low processes. However, if the low
process is not informed of the error, or the system automatically creates the
file, subjects may not be signalled possible errors made in legitimate attempts
to write. As another example, consider a low level subject that requires a re-
source (e.g., CPU or lock) that is busy by a high level subject. The system, by
not allocating the resource because it is busy, can again be exploited to signal
information at lower levels (high level processes can module the signal by requir-
ing or releasing resources). If a low process can see any different result due to
a high process operation, there is a channel between them. Channels may also
be enacted without modifying the system’s response to processes. This is, for
example, the case of timing channels , that can be enacted when it is possible
for a high process to affect the system’s response time to a low process. With
timing channels the response that the low process receives is always the same,
it is the time at which the low process receives the response that communicates
information. Therefore, in principle, any common resource or observable prop-
erty of the system state can be used to leak information. Consideration of covert
channels requires particular care in the design of the enforcement mechanism.
For instance, locking and concurrency mechanisms must be revised and be prop-
erly designed [7]. A complication in their design is that care must be taken to
avoid the policy for blocking covert channels to introduce denials-of-service. For
instance, a trivial solution to avoid covert channels between high and low level
processes competing over common resources could be to always give priority to
low level processes (possibly terminating high level processes). This approach,
however, exposes the systems to denials-of-service attacks whereby low level
processes can impede high level (and therefore, presumably, more important)
processes to complete their activity.

Covert channels are difficult to control also because of the difficulty of map-
ping an access control model’s primitive to a computer system [64]. For this
reason, covert channels analysis is usually carried out in the implementation
phase, to make sure that the implementation of the model’s primitive is not too
weak. Covert channel analysis can be based on tracing the information flows
in programs [31], checking programs for shared resources that can be used to
transfer information [52], or checking the system clock for timing channels [92].
Beside the complexity, the limitation of such solutions is that covert channels
are found out at the end of the development process, where system changes are
much more expensive to correct. Interface models have been proposed which at-
tempt to rule out covert channels analysis in the modeling phase [64,37]. Rather
than specifying a particular method to enforce security, interface models specify
restrictions on a system’s input/output that must be obeyed to avoid covert
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channels. It is then task of the implementor to determine a method for satisfy-
ing the specifications. A well known principle which formed the basis of interface
models is the non-interference principle proposed by Goguen and Meseguer [40].
Intuitively, non-interference requires that high-level input cannot interfere with
low-level output. Non-interference constraints enhance the security properties
that can be formalized and proved in the model; it is however important to
note that security models do not establish complete security of the system, they
merely establish security with respect to a model, they can prove only properties
that have been captured into the model.

5 Enriching DAC with Mandatory Restrictions

As we have discussed in the previous section, mandatory policies guarantee bet-
ter security than discretionary policies, since they can also control indirect infor-
mation flows. However, their application may result too rigid. Several proposals
have attempted a combination of mandatory flow control and discretionary au-
thorizations. We illustrate some of them in this section.

5.1 The Chinese Wall Policy

The Chinese Wall [22] policy was introduced as an attempt to balance commer-
cial discretion with mandatory controls. The goal is to prevent information flows
which cause conflict of interest for individual consultants (e.g., an individual
consultant should not have information about two banks or two oil companies).
However, unlike in the Bell and LaPadula model, access to data is not con-
strained by the data classifications but by what data the subjects have already
accessed. The model is based on a hierarchical organization of data objects as
follows:

– basic objects are individual items of information (e.g., files), each concerning
a single corporation;

– company datasets define groups of objects that refer to a same corporation;
– conflict of interest classes define company datasets that refer to competing

corporations.

Figure 12 illustrates an example of data organization where nine objects of
four different corporations, namely A,B,C, and D, are maintained. Correspondingly
four company datasets are defined. The two conflict of interest classes depicted
define the conflicts between A and B, and between C and D.

Given the object organization as above, the Chinese Wall policy restricts
access according to the following two properties [22]:

Simple security rule A subject s can be granted access to an object o only if
the object o:
– is in the same company datasets as the objects already accessed by s,

that is, “within the Wall”, or
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Fig. 12. An example of object organization

– belongs to an entirely different conflict of interest class.
*-property Write access is only permitted if

– access is permitted by the simple security rule, and
– no object can be read which i) is in a different company dataset than

the one for which write access is requested, and ii) contains unsanitized
information.

The term subject used in the properties is to be interpreted as user (mean-
ing access restrictions are referred to users). The reason for this is that, unlike
mandatory policies that control processes, the Chinese Wall policy controls users.
It would therefore not make sense to enforce restrictions on processes as a user
could be able to acquire information about organizations that are in conflict of
interest simply running two different processes.

Intuitively, the simple security rule blocks direct information leakages that
can be attempted by a single user, while the *-property blocks indirect infor-
mation leakages that can occur with the collusion of two or more users. For
instance, with reference to Figure 12, an indirect improper flow could happen
if, i) a user reads information from object ObjA-1 and writes it into ObjC-1,
and subsequently ii) a different user reads information from ObjC-1 and writes
it into ObjB-1.

Clearly, the application of the Chinese Wall policy still has some limitations.
In particular, strict enforcement of the properties may result too rigid and, like
for the mandatory policy, there will be the need for exceptions and support of
sanitization (which is mentioned, but not investigated, in [22]). Also, the enforce-
ment of the policies requires keeping and querying the history of the accesses.
A further point to take into consideration is to ensure that the enforcement of
the properties will not block the system working. For instance, if in a system
composed of ten users there are eleven company datasets in a conflict of in-
terest class, then one dataset will remain inaccessible. This aspect was noticed
in [22], where the authors point out that there must be at least as many users
as the maximum number of datasets which appear together in a conflict of in-
terest class. However, while this condition makes the system operation possible,
it cannot ensure it when users are left completely free choice on the datasets
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they access. For instance, in a system with ten users and ten datasets, again one
dataset may remain inaccessible if two users access the same dataset.

Although the model does have some limitations and drawbacks, the Chinese
Wall policy represents a good example of dynamic separation of duty constraints
present in the real world, and has been taken as a reference in the development
of several subsequent policies and models (see Section 7).

5.2 Authorization-Based Information Flow Policies

Other proposals that tried to overcome the vulnerability of discretionary poli-
cies have worked on complementing authorization control with information flow
restrictions, interpreting the mandatory and information flow policies [31,55] in
a discretionary context.

The work in [19,51] proposes interposing, between programs and the actual
file system, a protected system imposing further restrictions. In particular, Boe-
bert and Ferguson [19] forces all files to go through a dynamic linker that com-
pares the name of the user who invoked the program, the name of the originator
of the program, and the name of the owner of any data files. If a user invokes
a program owned by someone else and the program attempts to write the user’s
files, the dynamic linker will recognize the name mismatch and raise an alarm.
Karger [51] proposes instead the specification of name restrictions on the files
that programs can access, and the refusal by the system of all access requests
not satisfying the given patterns (e.g., a FORTRAN compiler may be restricted
to read only files with suffix “.for” and to create only files with suffix “.obj” and
“.lis”).

McCollum et al. [62] point out data protection requirements that neither the
discretionary nor the mandatory policies can effectively handle. They propose
a dissemination control system that maintains access control over one’s data by
attaching to the data object an access control list (imposing access restrictions)
that propagates, through subject and object labels, to all objects into which its
content may flow. Examples of restrictions can be: nocontract (meaning no
access to contractors) or noforn (no releasable to foreign nationals). By prop-
agating restrictions and enforcing the control, intuitively, the approach behaves
like a dynamic mandatory policy; however, explicit restrictions in the access list
give more flexibility than mandatory security labels. The model also provides
support for exceptions (the originator of an ACL can allow restrictions to be
waived) and downgrading (trusted subjects can remove restrictions imposed on
objects).

A similar approach appears in [85], which, intuitively, interprets the informa-
tion flow model of Denning [31] in the discretionary context. In [85] each object
has two protection attributes: the current access and the potential access . The
current access attribute describes what operations each user can apply on the
object (like traditional ACLs). It is a subset of the potential access attribute.
The potential access attribute describes what operations which users can poten-
tially apply to the information contained in that object, information that, in the
future, may be contained in any object and may be of any type. The potential
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access attributes therefore control information flow. When a new value of some
object y is produced as a function of objects in x1, . . . , xn, then the potential
access attribute of y is set to be the intersection of the potential access attributes
of x1, . . . , xn.

Walter et al. [87] propose an interpretation of the mandatory controls within
the discretionary context. Intuitively, the policy behind this approach, which we
call strict policy, is based on the same principles as the mandatory policy. Access
control lists are used in place of labels, and the inclusion relationship between
sets is used in place of the dominance relationship between labels. Information
flow restrictions impose that a process can write an object o only if o is protected
in reading at least as all the objects read by the process up to that point. (An
object o is at least as protected in reading as another object o′ if the set of
subjects allowed to read o is contained in the set of subjects allowed to read o′.)
Although the discretionary flexibility of specifying accesses is not lost, the overall
flexibility is definitely reduced by the application of the strict policy. After having
read an object o, a process is completely unable to write any object less protected
in reading than o, even if the write operation would not result in any improper
information leakage.

Bertino et al. [14] present an enhancement of the strict policy to introduce
more flexibility in the policy enforcement. The proposal bases on the observa-
tion that whether or not some information can be released also depends on the
procedure enacting the release. A process may access sensitive data and yet not
release any sensitive information. Such a process should be allowed to bypass the
restrictions of the strict policy, thus representing an exception. On the other side,
the information produced by a process may be more sensitive than the informa-
tion the process has read. An exception should in this case restrict the write
actions otherwise allowed by the strict policy. Starting from these observations,
Bertino et al. [14] allow procedures to be granted exceptions to the strict policy.
The proposal is developed in the context of object-oriented systems, where the
modularity provided by methods associated with objects allows users to identify
specific pieces of trusted code for which exceptions can be allowed, and therefore
provide flexibility in the application of the control. Exceptions can be positive
or negative. A positive exception overrides a restriction imposed by the strict
policy, permitting an information flow which would otherwise be blocked. A neg-
ative exception overrides a permission stated by the strict policy forbidding an
information flow which would otherwise be allowed. Two kinds of exceptions are
supported by the model: reply-exceptions and invoke-exceptions . Reply excep-
tions apply to the information returned by a method. Intuitively, positive reply
exceptions apply when the information returned by a method is less sensitive
than the information the method has read. Reply exceptions can waive the strict
policy restrictions and allow information returned by a method to be disclosed
to users not authorized to read the objects that the method has read. Invoke
exceptions apply during a method’s execution, for write operations that the
method requests. Intuitively, positive invoke exceptions apply to methods that
are trusted not to leak (through write operations or method invocations) the
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information they have acquired. The mechanism enforcing the control is based
on the notion of message filter first introduced by Jajodia and Kogan [46] for
the enforcement of mandatory policies in object-oriented systems. The message
filter is a trusted system component that acts as a reference monitor, intercept-
ing every message exchanged among the objects in a transaction execution to
guarantee that no unsafe flow takes place. To check whether a write or create
operation should be blocked, the message filter in [14] keeps track of the informa-
tion transmitted between executions and of the users who are allowed to know
(read) it. A write operation on object o is allowed if, based on the ACLs of the
objects read and on the exceptions encountered, the information can be released
to all users who have read privileges on o.

6 Discretionary Access Control Policies

In Section 2 we introduced the basic concepts of the discretionary policy by
illustrating the access matrix (or HRU) model. Although the access matrix still
remains a framework for reasoning about accesses permitted by a discretionary
policy, discretionary policies have developed considerably since the access matrix
was proposed.

6.1 Expanding Authorizations

Even early approaches to authorization specifications allowed conditions to be
associated with authorizations to restrict their validity. Conditions can make the
authorization validity dependent on the satisfaction of some system predicates
(system-dependent conditions) like the time or location of access. For instance,
a condition can be associated with the bank-clerks’ authorization to access ac-
counts, restricting its application only from machines within the bank building
and in working hours. Conditions can also constraint access depending on the
content of objects on which the authorization is defined (content-dependent con-
ditions). Content-dependent conditions can be used simply as way to determine
whether or not an access to the object should be granted or as way to restrict
the portion of the object that can be accessed (e.g., a subset of the tuples in a re-
lation). This latter option is useful when the authorization object has a coarser
granularity than the one supported by the data model [29]. Other possible con-
ditions that can be enforced can make an access decision depend on accesses
previously executed (history dependent conditions).

Another feature usually supported even by early approaches is the concept of
user groups (e.g., Employees, Programmers, Consultants). Groups can be nested
and need not be disjoint. Figure 13 illustrates an example of user-group hier-
archy. Support of groups greatly simplifies management of authorizations, since
a single authorization granted to a group can be enjoyed by all its members. Later
efforts moved to the support of groups on all the elements of the authorization
triple (i.e., subject, object, and action), where, typically, groups are abstractions
hierarchically organized. For instance, in an operating system the hierarchy can
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Fig. 14. An example of object hierarchy

reflect the logical file system tree structure, while in object-oriented system it
can reflect the class (is-a) hierarchy. Figure 14 illustrates an example of object
hierarchy. Even actions can be organized hierarchically, where the hierarchy may
reflect an implication of privileges (e.g., write is more powerful than read [70])
or a grouping of sets of privileges (e.g., a “writing privileges” group can be de-
fined containing write, append, and undo [84]). These hierarchical relationships
can be exploited i) to support preconditions on accesses (e.g., in Unix a sub-
ject needs the execute, x, privilege on a directory in order to access the files
within it), or ii) to support authorization implication, that is, authorizations
specified on an abstraction apply to all its members. Support of abstractions
with implications provides a short hand way to specify authorizations, clearly
simplifying authorization management. As a matter of fact, in most situations
the ability to execute privileges depends on the membership of users into groups
or objects into collections: translating these requirements into basic triples of the
form (user,object,action) that then have to be singularly managed is a consider-
able administrative burden, and makes it difficult to maintain both satisfactory
security and administrative efficiency. However, although there are cases where
abstractions can work just fine, many will be the cases where exceptions (i.e.,
authorizations applicable to all members of a group but few) will need to be sup-
ported. This observation has brought to the combined support of both positive
and negative authorizations. Traditionally, positive and negative authorizations
have been used in mutual exclusion corresponding to two classical approaches
to access control, namely:
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Closed policy: authorizations specify permissions for an access (like in the
HRU model). The closed policy allows an access if there exists a positive
authorization for it, and denies it otherwise.

Open policy: (negative) authorizations specify denials for an access. The open
policy denies an access if there exists a negative authorization for it, and
allows it otherwise.

The open policy has usually found application only in those scenarios where
the need for protection is not strong and by default access is to be granted.
Most systems adopt the closed policy, which, denying access by default, ensures
better protection; cases where information is public by default are enforced with
a positive authorization on the root of the subject hierarchy (e.g., Public).

The combined use of positive and negative authorizations was therefore con-
sidered as a way to conveniently support exceptions. To illustrate, suppose we
wish to grant an authorization to all members of a group composed of one thou-
sand users, except to one specific member Bob. In a closed policy approach, we
would have to express the above requirement by specifying a positive authoriza-
tion for each member of the group except Bob.7 However, if we combine positive
and negative authorizations we can specify the same requirement by granting
a positive authorization to the group and a negative authorization to Bob.

The combined use of positive and negative authorizations brings now to the
problem of how the two specifications should be treated:

– what if for an access no authorization is specified? (incompleteness)
– what if for an access there are both a negative and a positive authorization?

(inconsistency)

Completeness can be easily achieved by assuming that one of either the open
or closed policy operates as a default , and accordingly access is granted or denied
if no authorization is found for it. Note that the alternative of explicitly requiring
completeness of the authorizations is too heavy and complicates administration.

Conflict resolution is a more complex matter and does not usually have
a unique answer [48,58]. Rather, different decision criteria could be adopted,
each applicable in specific situations, corresponding to different policies that can
be implemented. A natural and straightforward policy is the one stating that
“the most specific authorization should be the one that prevails”; after all this
is what we had in mind when we introduced negative authorizations in the first
place (our example about Bob). Although the most-specific-takes-precedence
principle is intuitive and natural and likely to fit in many situations, it is not
enough. As a matter of fact, even if we adopt the argument that the most specific
authorization always wins (and this may not always be the case) it is not always
clear what more specific is:

– what if two authorizations are specified on non-disjoint, but non-hierarchical-
ly related groups (e.g., Citizens and CS-Dept in Figure 13)?

7 In an open policy scenario, the dual example of all users, but a few, who have to be
denied an access can be considered.
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– what if for two authorizations the most specific relationship appear reversed
over different domains? For instance, consider authorizations (CS-Faculty,
read+, mail) and (CS-Dept, read−, personal); the first has a more specific
subject, while the second has a more specific object (see Figures 13 and 14).

A slightly alternative policy on the same line as the most specific policy
is what in [48] is called most-specific-along-a-path-takes-precedence. This policy
considers an authorization specified on an element x as overriding an autho-
rization specified on a more general element y only for those elements that are
members of y because of x. Intuitively, this policy takes into account the fact
that, even in the presence of a more specific authorization, the more general
authorization can still be applicable because of other paths in the hierarchy.
For instance, consider the group hierarchy in Figure 13 and suppose that for
an access a positive authorization is granted to Public while a negative autho-
rization is granted to CS-Dept. What should we decide for George? On the one
side, it is true that CS-Dept is more specific than Public; on the other side,
however, George belongs to Eng-Dept, and for Eng-Dept members the posi-
tive authorization is not overridden. While the most-specific-takes-precedence
policy would consider the authorization granted to Public as being overridden
for George, the most-specific-along-a-path considers both authorizations as ap-
plicable to George. Intuitively, in the most-specific-along-a-path policy, an au-
thorization propagates down the hierarchy until overridden by a more specific
authorization [35].

The most specific argument does not always apply. For instance, an organi-
zation may want to be able to state that consultants should not be given access
to private projects, no exceptions allowed . However, if the most specific policy is
applied, any authorization explicitly granted to a single consultant will override
the denial specified by the organization. To address situations like this, some
approaches proposed adopting explicit priorities. In ORION [70], authorizations
are classified as strong or weak : weak authorizations override each other based on
the most-specific policy, and strong authorizations override weak authorizations
(no matter their specificity) and cannot be overridden. Given that strong autho-
rizations must be certainly obeyed, they are required to be consistent. However,
this requirement may be not always be enforceable. This is, for example, the
case where groupings are not explicitly defined but depend on the evaluation of
some conditions (e.g., “all objects owned by Tom”, “all objects created before
1/1/01”). Also, while the distinction between strong and weak authorizations
is convenient in many situations and, for example, allows us to express the or-
ganizational requirement just mentioned, it is limited to two levels of priority,
which may not be enough. Many other conflict resolution policies can be applied.
Some approaches, extending the strong and weak paradigm, proposed adopting
explicit priorities; however, these solutions do not appear viable as the autho-
rization specifications may result not always clear. Other approaches (e.g., [84])
proposed making authorization priority dependent on the order in which au-
thorizations are listed (i.e., the authorizations that is encountered first applies).
This approach, however, has the drawback that granting or removing an au-
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– Denials-take-precedence: negative authorizations take precedence (satisfies the “fail
safe principle”)

– Most-specific-takes-precedence the authorization that is “more specific” w.r.t.
a partial order (i.e., hierarchy) wins

– Most-specific-along-a-path-takes-precedence: the authorization that is “more spe-
cific” wins only on the paths passing through it. Intuitively, an authorization
propagates down a hierarchy until overridden by a more specific authorization.

– Strong/weak: authorizations are classified as strong or weak: weak authorizations
override each other based on the most-specific policy, and strong authorizations
override weak authorizations (no matter their specificity). Strong authorizations
are therefore required to be consistent.

– Priority level: each authorization is associated with a priority level, the authoriza-
tion with the highest priority wins.

– Positional: the priority of the authorizations depends on the order in which they
appear in the authorization list.

– Grantor-dependent: the priority of the authorizations depends on who granted
them.

– Time-dependent the priority of the authorizations depends on the time at they
have been granted (e.g., more recent wins)

Fig. 15. Examples of conflict resolution policies

thorization requires inserting the authorization in the proper place in the list.
Beside the administrative burden put on the administrator (who, essentially, has
to explicitly solve the conflicts when deciding the order), specifying authoriza-
tions implies explicitly writing the ACL associated with the object, and may
impede delegation of administrative privileges. Other possible ways of defining
priorities, and therefore solving conflicts, can make the authorization’s priority
dependent on the time at which the authorizations was granted (e.g., more re-
cent authorizations prevails) or on priorities between the grantors . For instance,
authorizations specified by an employee may be overridden by those specified by
his supervisor; the authorizations specified by an object’s owner may override
those specified by other users to whom the owner has delegated administrative
authority.

As it is clear from this discussion, different approaches can be taken to deal
with positive and negative authorizations. Also, if it is true that some solutions
may appear more natural than others, none of them represents “the perfect
solution”. Whichever approach we take, we will always find one situation for
which it does not fit. Also, note that different conflict resolution policies are
not mutually exclusive. For instance, one can decide to try solving conflicts
with the most-specific-takes-precedence policy first, and apply the denials-take-
precedence principle on the remaining conflicts (i.e., conflicting authorizations
that are not hierarchically related).

The support of negative authorizations does not come for free, and there
is a price to pay in terms of authorization management and less clarity of the



Access Control: Policies, Models, and Mechanisms 171

specifications. However, the complications brought by negative authorizations
are not due to negative authorizations themselves, but to the different semantics
that the presence of permissions and denials can have, that is, to the complex-
ity of the different real world scenarios and requirements that may need to be
captured. There is therefore a trade-off between expressiveness and simplicity.
For this reason, most current systems adopting negative authorizations for ex-
ception support impose specific conflict resolution policies, or support a limited
form of conflict resolution. For instance, in the Apache server [6], authorizations
can be positive and negative and an ordering (“deny,allow” or “allow,deny”)
can be specified dictating how negative and positive authorizations are to be in-
terpreted. In the “deny,allow” order, negative authorizations are evaluated first
and access is allowed by default (open policy). Any client that does not match
a negative authorization or matches a positive authorization is allowed access. In
the “allow,deny” order, the positive authorizations are evaluated first and access
is denied by default (closed policy). Any client that does not match a positive
authorization or does match a negative authorization will be denied access.

More recent approaches are moving towards the development of flexible
frameworks with the support of multiple conflict resolution and decision policies.
We will examine them in Section 8.

Other advancements in authorization specification and enforcement have
been carried out with reference to specific applications and data mod-
els. For instance, authorization models proposed for object-oriented systems
(e.g., [2,35,71]) exploit the encapsulation concept, meaning the fact that access
to objects is always carried out through methods (read and write operations
being primitive methods). In particular, users granted authorizations to invoke
methods can be given the ability to successfully complete them, without need to
have the authorizations for all the accesses that the method execution entails.
For instance, in OSQL, each derived function (i.e., method) can be specified as
supporting static or dynamic authorizations [2]. A dynamic authorization allows
the user to invoke the function, but its successful completion requires the user to
have the authorization for all the calls the function makes during its execution.
With a static authorization, calls made by the function are checked against the
creator of the function, instead of those of the calling user. Intuitively, static
authorizations behave like the setuid (set user id) option, provided by the Unix
operating system that, attached to a program (e.g., lpr) implies that all access
control checks are to be performed against the authorizations of the program’s
owner (instead of those of the caller as it would otherwise be). A similar feature
is also proposed in [71], where each method is associated with a principal, and
accesses requested during a method execution are checked against the autho-
rization of the method’s principal. Encapsulation is also exploited by the Java 2
security model [83] where authorizations can be granted to code, and requests
to access resources are checked against the authorizations of the code directly
attempting the access.
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6.2 Temporal Authorizations

Bertino et al. [13] propose extending authorizations with temporal constraints
and extending authorization implication with time-based reasoning. Authoriza-
tions have associated a validity specified by a temporal expression identifying the
instants in which the authorization applies. The temporal expression is formed by
a periodic expression (e.g., 9 a.m. to 1 p.m. on Working-days, identifying
the periods from 9a.m. to 1p.m. in all days excluding weekends and vacations),
and a temporal interval bounding the scope of the periodic expression (e.g.,
[2/1997,8/1997], restricting the specified periods to those between February
and August 1997). The model allows also the specification of derivation rules, ex-
pressing temporal dependencies among authorizations, that allow the derivation
of new authorizations based on the presence or absence of other authorizations
in specific periods of time. For instance, it is possible to specify that two users,
working on the same project, must receive the same authorizations on given
objects, or that a user should receive the authorization to access an object in
certain periods, only if nobody else was ever authorized to access the same ob-
ject in any instant within those periods. Like authorizations, derivation rules are
associated with a temporal expression identifying the instants in which the rule
applies. A derivation rule is a triple ([tb, te], P, A 〈op〉 A), where interval
[tb, te] and period P represent the temporal expression, A is the authorization
to be derived, A a is boolean formula of authorizations on which derivation is
based, and op is one of the following operators: whenever, aslongas, upon.
The three operators correspond to different temporal relationships between au-
thorizations on which derivation can work, and have the following semantics:

– whenever derives A for each instant in ([tb, te],P) for which A is valid.
– aslongas derives A for each instant in ([tb, te],P) such that A has been

“continuously” valid in ([tb, te],P).
– upon derives A from the first instant in ([tb, te],P) for which A is valid up

to te.

A graphical representation of the semantics of the different temporal opera-
tors is given in Figure 16. Intuitively, whenever captures the usual implication
of authorizations. For instance, a rule can state that summer-staff can read a doc-
ument for every instance (i.e., whenever) in the summer of year 2000 in which
regular-staff can read it. aslongas works in a similar way but stops the deriva-
tion at the first instant in which the boolean formula on which derivation works
is not satisfied. For instance, a rule can state that regular-staff can read a doc-
ument every working day in year 2000 until the first working day in which (i.e.,
aslongas) summer-staff is allowed for that. Finally, upon works like a trigger.
For instance, a rule can state that Ann can read pay-checks each working day
starting from the first working day in year 2000 in which (i.e., upon) Tom can
write pay-checks.

The enforcement mechanism is based on a translation of temporal authoriza-
tions and derivation rules into logic programs (Datalog programs with negation
and periodicity and order constraints). The materialization of the logic program
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A

Legend

derivability of A if R is an ASLONGAS rule

derivability of A if R is an UPON rule

derivability of A if R is a WHENEVER rule

instants denoted by P

validity of formulaA

R=([tb,te],P,A <OP>    )

Fig. 16. Semantics of the different temporal operators [13]

guarantees efficient access. The model is focussed on time-based constraints and
reasoning and allows expressing authorization relationships and derivation not
covered in other models. However, it does not address the enforcement of dif-
ferent implication and conflict resolution policies (conflicts between permissions
and denials are solved according to the denials-take-precedence policy).

6.3 A Calculus for Access Control

Abadi et al. [1] present a calculus for access control that combines authentication
(i.e., identity check) and authorization control, taking also into account possible
delegation of privileges among parties. The calculus is based on the notion of
principals . Principals are sources of requests and make statements (e.g., “read
file tmp”). Principals can be either simple (e.g., users, machines, and commu-
nication channels) or composite. Composite principals are obtained combining
principals by means of constructors that allow to capture groups and delega-
tions.a Principals can be as follows [1]:

– Users and machines .
– Channels , such as input devices and cryptographic channels.
– Conjunction of principals , of the form A ∧ B. A request ¿from A ∧ B is

a request that both A and B make (it is not necessary that the request be
made in concert).

– Groups , define groups of principals, membership of principal Pi in group Gi

is written Pi =⇒ Gi. Disjunction A ∨ B denotes a group composed only of
A and B.
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– Principals in roles , of the form A as R. The principal A may adopt the role R
and act under the name “A as R” when she wants to diminish her powers,
in particular as protection against blunders.8

– Principals on behalf of principals, of the form A for B. The principal A may
delegate authority to B, and B can then act on her behalf, using the iden-
tity B for A. In most cases, A is a user delegating to a machine B; delegation
can also occur between machines.

– Principals speaking for other principals, of the form A ◦ B, denoting that
B speaks on behalf ofA, but not necessarily with a proof thatA has delegated
authority to B.

The process of determining whether a request from a principal should be
granted or denied is based on a modal logic that extends the algebra of principals
and serves as a basis for different algorithms and protocols. Intuitively, a request
on an object will be granted if it is authorized according to the authorizations
stated in the ACL of the object and the implication relationships and delegations
holding among principals.

6.4 Administrative Policies

Administrative policies determine who is authorized to modify the allowed ac-
cesses. This is one of the most important, and probably least understood, aspect
of access controls. In multilevel mandatory access control the allowed accesses
are determined entirely on basis of the security classification of subjects and
objects. Security levels are assigned to users by the security administrator. Se-
curity levels of objects are determined by the system on the basis of the levels
of the users creating them. The security administrator is typically the only one
who can change security levels of subjects and objects. The administrative pol-
icy is therefore very simple. Discretionary access control permits a wide range
of administrative policies. Some of these are described below.

– Centralized: A single authorizer (or group) is allowed to grant and revoke
authorizations to the users.

– Hierarchical: A central authorizer is responsible for assigning administrative
responsibilities to other administrators. The administrators can then grant
and revoke access authorizations to the users of the system. Hierarchical
administration can be applied, for example, according to the organization
chart.

– Cooperative: Special authorizations on given resources cannot be granted by
a single authorizer but need cooperation of several authorizers.

8 Note that there is a difference in the semantics assigned to roles in [1] and in role-
based access control model (see Section 7). In [1] a principal’s privileges always
diminish when the principal takes on some role; also an implication relationship is
enforced allowing a principal P to use authorizations granted to any principal of the
form P as R.



Access Control: Policies, Models, and Mechanisms 175

– Ownership: Each object is associated with an owner, who generally coincides
with the user who created the object. Users can grant and revoke authoriza-
tions on the objects they own.

– Decentralized: Extending the previous approaches, the owner of an object
(or its administrators) can delegate other users the privilege of specifying
authorizations, possibly with the ability of further delegating it.

Decentralized administration is convenient since it allows users to delegate
administrative privileges to others. Delegation, however, complicates the autho-
rization management. In particular, it becomes more difficult for users to keep
track of who can access their objects. Furthermore, revocation of authorizations
becomes more complex. There are many possible variations on the way decentral-
ized administration works, which may differ in the way the following questions
are answered.

– what is the granularity of administrative authorizations?
– can delegation be restricted, that is, can the grantor of an administrative

authorization impose restrictions on the subjects to which the recipient can
further grant the authorization?

– who can revoke authorizations?
– what about authorizations granted by the revokee?

In general, existing decentralized policies allow users to grant administra-
tion for a specific privilege (meaning a given access on a given object). They
do not allow, however, to put constraints on the subjects to which the recipi-
ent receiving administrative authority can grant the access. This feature could,
however, result useful. For instance, an organization could delegate one of its
employees to granting access to some resources constraining the authorizations
she can grant to employees working within her laboratory. Usually, authoriza-
tions can be revoked only by the user who granted them (or, possibly, by the
object’s owner). When an administrative authorization is revoked, the problem
arises of dealing with the authorizations specified by the users from whom the
administrative privilege is being revoked. For instance, suppose that Ann gives
Bob the authorization to read File1 and gives him the privilege of granting this
authorization to others (in some systems, such capability of delegation is called
grant option [42]). Suppose then that Bob grants the authorization to Chris,
and susequently Ann revokes the authorization from Bob. The question now is:
what should happen to the authorization that Chris has received? To illustrate
how revocation can work it is useful to look at the history of System R [42]. In
the System R authorization model, users creating a table can grant other users
access privileges on it. Authorizations can be granted with the grant-option. If
a user receives the authorization for an access with the grant-option she can
grant the access (and the grant option on it) to others. Intuitively, this intro-
duces a chain of authorizations. The original System R policy, which we call
(time-based) cascade revocation, adopted the following semantics for revocation:
when a user is revoked the grant option on an access, all authorizations that
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☛
✡

✟
✠Ann

☛
✡

✟
✠Bob

☛
✡

✟
✠Chris

☛
✡

✟
✠David

☛
✡

✟
✠Ellen

☛
✡

✟
✠Frank

☛
✡

✟
✠Gary

☛
✡

✟
✠Homer

80 g
◗

◗
◗◗�✑

✑
✑✑✸

20 g

◗
◗

◗◗�
30 g

◗
◗

◗◗�
40 g

✑
✑

✑✑✸
60 g

✑
✑

✑✑✸
50 g

◗
◗

◗◗�
70 g

✲55 g

(a)

☛
✡

✟
✠Ann

☛
✡

✟
✠Bob

☛
✡

✟
✠Chris

☛
✡

✟
✠David

☛
✡

✟
✠Frank

✑
✑

✑✑✸
20 g

◗
◗

◗◗�
30 g

✑
✑

✑✑✸
60 g

◗
◗

◗◗�
70 g

(b)

Fig. 17. Example of the original System-R, time-based cascade revocation

she granted and could not have been granted had the revoked authorization not
been present, should also be (recursively) deleted. The revocation is recursive
since it may, in turn, cause other authorizations to be deleted. More precisely,
let AUTH be the initial authorization state and G1, . . . , Gn be a sequence of
grant requests (history) that produced authorization state AUTH′. The revo-
cation of a grant Gk should result in authorization state AUTH′′ as if Gk had
never been granted, that is, resulting from history G1, . . . , Gk−1, Gk+1, . . . , Gn.
Enforcement of this revocation semantics requires to keep track of i) who granted
which authorization, and ii) the time at which the authorization was granted.
To illustrate, consider the sequence of grant operations pictured in Figure 17(a),
referred to the delegation of a specific privilege. Here, nodes represent users,
and arcs represent the granting of a specific access from one user to another.
The label associated with the arc states the time at which the authorization
was granted and whether the grant option was granted as well. For instance,
Ann granted the authorization, with the grant option, to Bob at time 20, and to
Chris at time 30. Suppose now that Bob revokes the authorization he granted to
David. According to the revocation semantics to be enforced, the authorization
that David granted to Ellen must be deleted as well, since it was granted at
time 50 when, had David not hold the authorizations being revoked, the grant
request would have been denied. Consequently, and for the same reasoning, the
two authorizations granted by Ellen also need to be deleted, resulting in the
authorization state of Figure 17(b).

Although the time-based cascade revocation has a clean semantics, it is not
always accepted. Deleting all authorizations granted in virtue of an authorization
that is being revoked is not always wanted. In many organizations, the authoriza-
tions that users possess are related to their particular tasks or functions within
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the organization. Suppose there is a change in the task or function of a user (say,
because of a job promotion). This change may imply a change in the responsibili-
ties of the user and therefore in her privileges. New authorizations will be granted
to the user and some of her previous authorizations will be revoked. Applying a
recursive revocation will result in the undesirable effect of deleting all authoriza-
tions the revokee granted and, recursively, all the authorizations granted through
them, which then will need to be re-issued. Moreover, all application programs
depending on the revoked authorizations will be invalidated. An alternative form
of revocation was proposed in [15], where non-cascade revocation is introduced.
Instead of deleting all the authorizations granted by the revokee in virtue of the
authorizations being revoked, non-recursive revocation re-specifies them to be
under the authority of the revoker, which can then retain or selectively delete
them. The original time-based revocation policy of System R, was changed to
not consider time anymore. In SQL:1999 [28] revocation can be requested with
or without cascade. Cascade revocation recursively deletes authorizations if the
revokee does not hold anymore the grant option for the access. However, if the
revokee still holds the grant option for the access, the authorizations she granted
are not deleted (regardless of time they were granted). For instance, with ref-
erence to Figure 17(a), the revocation by Bob of the authorization granted to
David, would only delete the authorization granted to David by Bob. Ellen’s
authorization would still remain valid since David still holds the grant option
of the access (because of the authorization from Chris). With the non cascade
option the system rejects the revoke operation if its enforcement would entail
deletion of other authorizations beside the one for which revocation is requested.

6.5 Integrity Policies

In Section 4.4 we illustrated a mandatory policy (namely Biba’s model) for
protecting information integrity. Biba’s approach, however, suffers of two major
drawbacks: i) the constraints imposed on the information flow may result too
restrictive, and ii) it only controls integrity intended as the prevention of a flow
of information from low integrity objects to high integrity objects. However, this
notion of one-directional information flow in a lattice captures only a small part
of the data integrity problem [74].

Integrity is concerned with ensuring that no resource (including data and
programs9) has been modified in an unauthorized or improper way and that the
data stored in the system correctly reflect the real world they are intended to
represent (i.e., that users expect). Integrity preservation requires prevention of
frauds and errors, as the term “improper” used above suggests: violations to
data integrity are often enacted by legitimate users executing authorized actions
but misusing their privileges.

Any data management system today has functionalities for ensuring in-
tegrity [8]. Basic integrity services are, for example, concurrency control (to

9 Programs improperly modified can fool the access control and bypass the system
restrictions, thus violating the secrecy and/or integrity of the data (see Section 3).
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ensure correctness in case of multiple processes concurrently accessing data)
and recovery techniques (to reconstruct the state of the system in the case of
violations or errors occur). Database systems also support the definition and
enforcement of integrity constraints, that define the valid states of the database
constraining the values that it can contain. Also, database systems support the
notion of transaction, which is a sequence of actions for which the ACID prop-
erties must be ensured, where the acronym stands for: Atomicity (a transaction
is either performed in its entirety or not performed at all); Consistency (a trans-
action must preserve the consistency of the database); Isolation (a transaction
should not make its updates visible to other transactions until it is committed);
and Durability (changes made by a transaction that has committed must never
be lost because of subsequent failures).

Although rich, the integrity features provided by database management sys-
tems are not enough: they are only specified with respect to the data and their
semantics, and do not take into account the subjects operating on them. There-
fore, they can only protect against obvious errors in the data or in the system
operation, and not against misuses by subjects [23]. The task of a security pol-
icy for integrity is therefore to fill this gap and control data modifications and
procedure executions with respect to the subjects performing them. An attempt
in this respect is represented by the Clark and Wilson’s proposal [25], where the
following four basic criteria for achieving data integrity are defined.

1. Authentication. The identity of all users accessing the system must be prop-
erly authenticated (this is an obvious prerequisite for correctness of the con-
trol, as well as for establishing accountability).

2. Audit . Modifications should be logged for the purpose of maintaining an
audit log that records every program executed and the user who executed
it, so that changes could be undone.

3. Well-formed transactions Users should not manipulate data arbitrarily
but only in constrained ways that ensure data integrity (e.g., double en-
try bookkeeping in accounting systems). A system in which transactions are
well-formed ensures that only legitimate actions can be executed. In addi-
tion, well-formed transactions should provide logging and serializability of
resulting subtransactions in a way that concurrency and recovery mecha-
nisms can be established.

4. Separation of duty The system must associate with each user a valid set
of programs to be run. The privileges given to each user must satisfy the
separation of duty principle. Separation of duty prevents authorized users
from making improper modifications, thus preserving the consistency of data
by ensuring that data in the system reflect the real world they represent.

While authentication and audit are two common mechanisms for any access
control system, the latter two aspects are peculiar to the Clark and Wilson
proposal.

The definition of well-formed transaction and the enforcement of separation
of duty constraints is based on the following concepts.
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C1: All IVPs must ensure that all CDIs are in a valid state when the IVP is run.
C2: All TPs must be certified to be valid (i.e., preserve validity of CDIs’ state)
C3: Assignment of TPs to users must satisfy separation of duty
C4: The operations of TPs must be logged
C5: TPs execute on UDIs must result in valid CDIs
E1: Only certified TPs can manipulate CDIs
E2: Users must only access CDIs by means of TPs for which they are authorized
E3: The identity of each user attempting to execute a TP must be authenticated
E4: Only the agent permitted to certify entities can change the list of such entities

associated with other entities

Fig. 18. Clark and Wilson integrity rules

– Constrained Data Items. CDIs are the objects whose integrity must be safe-
guarded.

– Unconstrained Data Items. UDIs are objects that are not covered by the
integrity policy (e.g., information typed by the user on the keyboard).

– Integrity Verification Procedures. IVPs are procedures meant to verify that
CDIs are in a valid state, that is, the IVPs confirm that the data conforms
to the integrity specifications at the time the verification is performed.

– Transformation Procedures. TPs are the only procedures (well-formed pro-
cedures) that are allowed to modify CDIs or to take arbitrary user input and
create new CDIs. TPs are designed to take the system from one valid state
to the next

Intuitively, IVPs and TPs are the means for enforcing the well-formed trans-
action requirement: all data modifications must be carried out through TPs, and
the result must satisfy the conditions imposed by the IVPs.

Separation of duty must be taken care of in the definition of authorized op-
erations. In the context of the Clark and Wilson’s model, authorized operations
are specified by assigning to each user a set of well-formed transactions that she
can execute (which have access to constraint data items). Separation of duty re-
quires the assignment to be defined in a way that makes it impossible for a user
to violate the integrity of the system. Intuitively, separation of duty is enforced
by splitting operations in subparts, each to be executed by a different person (to
make frauds difficult). For instance, any person permitted to create or certify
a well-formed transaction should not be able to execute it (against production
data).

Figure 18 summarizes the nine rules that Clark and Wilson presented for
the enforcement of system integrity. The rules are partitioned into two types:
certification (C) and enforcement (E). Certification rules involve the evaluation
of transactions by an administrator, whereas enforcement is performed by the
system.

The Clark and Wilson’s proposal outlines good principles for controlling in-
tegrity. However, it has limitations due to the fact that it is far from formal and
it is unclear how to formalize it in a general setting.
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7 Role-Based Access Control Policies

Role-based access control (RBAC) is an alternative to traditional discretionary
(DAC) and mandatory access control (MAC) policies that is attracting increas-
ing attention, particularly for commercial applications. The main motivation
behind RBAC is the necessity to specify and enforce enterprise-specific security
policies in a way that maps naturally to an organization’s structure. In fact,
in a large number of business activities a user’s identity is relevant only ¿from
the point of view of accountability. For access control purposes it is much more
important to know what a user’s organizational responsibilities are, rather than
who the user is. The conventional discretionary access controls, in which indi-
vidual user ownership of data plays such an important part, are not a good
fit. Neither are the full mandatory access controls, in which users have security
clearances and objects have security classifications. Role-based access control
tries to fill in this gap by merging the flexibility of explicit authorizations with
additionally imposed organizational constraints.

7.1 Named Protection Domain

The idea behind role-based access control is grouping privileges (i.e., authoriza-
tions). The first work proposing collecting privileges for authorization assignment
is probably the work by Baldwin [9], where the concept of named protection do-
main (NPD) is introduced as a way to simplify security management in an
SQL-based framework. Intuitively, a named protection domain identifies a set
of privileges (those granted to the NPD) needed to accomplish a well-defined
task. For instance, in a bank organization, an NPD Accounts Receivable can
be defined to which all the privileges needed to perform the account-receivable
task are granted. NPD can be granted to users as well as to other NPDs, thus
forming a chain of privileges. The authorization state can be graphically repre-
sented as a directed acyclic graph where nodes correspond to privileges, NPDs,
and users, while arcs denote authorization assignments. An example of privilege
graph is illustrated in Figure 19, where three NPDs (Accounts Receivable,
Accounts Payable, and Accounts Supervisor) and the corresponding privi-
leges are depicted. Users can access objects only by activating NPDs holding
privileges on them. Users can only activate NPDs that have been directly or
indirectly assigned to them. For instance, with reference to Figure 19, Bob can
activate any of three NPDs, thus acquiring the corresponding privileges. To en-
force least privilege, users are restricted to activate only one NPD at the time.
NPDs can also be used to group users. For instance, a NPD named Employees
can be defined which corresponds to the set of employees of an organization.
NPDs correspond to the current concept of roles in SQL:1999 [28].

7.2 Role-Based Policies

Role-based policies regulate the access of users to the information on the basis
of the organizational activities and responsibility that users have in a system.
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Update on
Profit_Center

Select from
invoice

Insert into
Budget

Update on
Cost_Center

Accounts_
Receivable

Accounts_
Supervisor

Ann

Tom

Bob

Accounts_
Payable

Fig. 19. An example of NPD privilege graph [9]

Although different proposals have been made (e.g., [3,36,45,56,67,76,80]), the
basic concepts are common to all approaches. Essentially, role based policies
require the identification of roles in the system, where a role can be defined as
a set of actions and responsibilities associated with a particular working activity.
The role can be widely scoped, reflecting a user’s job title (e.g., secretary), or
it can be more specific, reflecting, for example, a task that the user needs to
perform (e.g., order processing). Then, instead of specifying all the accesses
each users is allowed to execute, access authorizations on objects are specified
for roles. Users are then given authorizations to adopt roles (see Figure 20).
The user playing a role is allowed to execute all accesses for which the role is
authorized. In general, a user can take on different roles on different occasions.
Also the same role can be played by several users, perhaps simultaneously. Some
proposals for role-based access control (e.g., [76,80]) allow a user to exercise
multiple roles at the same time. Other proposals (e.g., [28,48]) limit the user to
only one role at a time, or recognize that some roles can be jointly exercised while
others must be adopted in exclusion to one another. It is important to note the
difference between groups (see Section 6) and roles: groups define sets of users
while roles define sets of privileges. There is a semantic difference between them:
roles can be “activated” and “deactivated” by users at their discretion, while
group membership always applies, that is, users cannot enable and disable group
memberships (and corresponding authorizations) at their will. However, since
roles can be defined which correspond to organizational figures (e.g., secretary,
chair, and faculty), a same “concept” can be seen both as a group and as a role.

The role-based approach has several advantages. Some of these are discussed
below.

Authorization management Role-based policies benefit from a logical inde-
pendence in specifying user authorizations by breaking this task into two
parts: i) assignement of roles to users, and ii) assignement of authorizations
to access objects to roles. This greatly simplifies the management of the
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Fig. 20. Role-based access control

security policy: when a new user joins the organization, the administrator
only needs to grant her the roles corresponding to her job; when a user’s
job changes, the administrator simply has to change the roles associated
with that user; when a new application or task is added to the system, the
administrator needs only to decide which roles are permitted to execute it.

Hierarchical roles In many applications there is a natural hierarchy of roles,
based on the familiar principles of generalization and specialization. Fig-
ure 21 illustrates an example of role hierarchy: each role is represented as
a node and there is an arc between a specialized role and its generaliza-
tion. The role hierarchy can be exploited for authorization implication. For
instance, authorizations granted to roles can be propagated to their spe-
cializations (e.g., the secretary role can be allowed all accesses granted to
adm staff). Authorization implication can also be enforced on role assign-
ments, by allowing users to activate all generalizations of the roles assigned
to them (e.g., a user allowed to activate secretary will also be allowed to
activate role adm staff). Authorization implication has the advantage of fur-
ther simplifying authorization management. Note however that not always
implication may be wanted, as propagating all authorizations is contrary to
the least privilege principle. The hierarchy has also been exploited in [77]
for the definition of administrative privileges: beside the hierarchy of orga-
nizational roles, an additional hierarchy of administrative roles is defined;
each administrative role can be given authority over a portion of the role
hierarchy.

Least privilege Roles allow a user to sign on with the least privilege required
for the particular task she needs to perform. Users authorized to power-
ful roles do not need to exercise them until those privileges are actually
needed. This minimizes the danger of damage due to inadvertent errors,
Trojan Horses, or intruders masquerading as legitimate users.

Separation of duties Separation of duties refer to the principle that no user
should be given enough privileges to misuse the system on their own. For
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Fig. 21. An example of role hierarchy

instance, the person authorizing a paycheck should not be the same person
who can prepare them. Separation of duties can be enforced either statically
(by defining conflicting roles, that is, roles which cannot be executed by
the same user) or dynamically (by enforcing the control at access time). An
example of dynamic separation of duty restriction is the two-person rule.
The first user to execute a two-person operation can be any authorized user,
whereas the second user can be any authorized user different ¿from the
first [79].

Constraints enforcement Roles provide a basis for the specification and en-
forcement of further protection requirements that real world policies may
need to express. For instance, cardinality constraints can be specified, that
restrict the number of users allowed to activate a role or the number of roles
allowed to exercise a given privilege. The constraints can also be dynamic,
that is, be imposed on roles activation rather than on their assignment. For
instance, while several users may be allowed to activate role chair, a further
constraint can require that at most one user at a time can activate it.

Role-based policies represent a promising direction and a useful paradigm
for many commercial and government organizations. However, there is still some
work to be done to cover all the different requirements that real world scenarios
may present. For instance, the simple hierarchical relationship as intended in
current proposals may not be sufficient to model the different kinds of relation-
ships that can occur. For example, a secretary may need to be allowed to write
specific documents on behalf of her manager, but neither role is a specialization
of the other. Different ways of propagating privileges (delegation) should then
be supported. Similarly, administrative policies should be enriched. For instance,
the traditional concept of ownership may not apply anymore: a user does not
necessarily own the objects she created when in a given role. Also, users’ identi-
ties should not be forgotten. If it true that in most organizations, the role (and
not the identity) identifies the privileges that one may execute, it is also true
that in some cases the requestor’s identity needs to be considered even when
a role-based policy is adopted. For instance, a doctor may be allowed to specify
treatments and access files but she may be restricted to treatments and files
for her own patients, where the doctor-patient relationships is defined based on
their identity.
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8 Advanced Access Control Models

Throughout the chapter we investigated different issues concerning the devel-
opment of an access control system, discussing security principles, policies, and
models proposed in the literature. In this section we illustrate recent proposals
and ongoing work addressing access control in emerging applications and new
scenarios.

8.1 Logic-Based Authorization Languages

As discussed in Section 6, access control systems based only on the closed policy
clearly have limitations. The support of abstractions and authorization implica-
tions along them and the support of positive and negative authorizations provide
more flexibility in the authorization specifications. As we have seen, several ac-
cess control policies can be applied in this context (e.g., denials-take-precedence,
most-specific-takes-precedence, strong and weak) and have been proposed in
the literature. Correspondingly, several authorization models have been formal-
ized and access control mechanisms enforcing them implemented. However, each
model, and its corresponding enforcement mechanism, implements a single speci-
fied policy, which is in fact built into the mechanism. As a consequence, although
different policy choices are possible in theory, each access control system is in
practice bound to a specific policy. The major drawback of this approach is that
a single policy simply cannot capture all the protection requirements that may
arise over time. As a matter of fact, even within a single system:

– different users may have different protection requirements;
– a single user may have different protection requirements on different objects;
– protection requirements may change over time.

When a system imposes a specific policy on users, they have to work within
the confines imposed by the policy. When the protection requirements of an
application are different from the policy built into the system, in most cases,
the only solution is to implement the policy as part of the application code.
This solution, however, is dangerous from a security viewpoint since it makes
the tasks of verification, modification, and adequate enforcement of the policy
difficult.

Recent proposals have worked towards languages and models able to express,
in a single framework, different access control policies, to the goal of providing
a single mechanism able to enforce multiple policies. Logic-based languages, for
their expressive power and formal foundations, represent a good candidate. The
first work investigating logic-languages for the specification of authorizations is
the work by Woo and Lam [91]. Their proposal makes the point for the need of
flexibility and extensibility in access specifications and illustrates how these ad-
vantages can be achieved by abstracting from the low level authorization triples
and adopting a high level authorization language. Their language is essentially
a many-sorted first-order language with a rule construct, useful to express autho-
rization derivations and therefore model authorization implications and default
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decisions (e.g., closed or open policy). The use of a very general language, which
has almost the same expressive power of first order logic, allows the expression of
different kinds of authorization implications, constraints on authorizations, and
access control policies. However, as a drawback, authorization specifications may
result difficult to understand and manage. Also, the trade-off between expres-
siveness and efficiency seems to be strongly unbalanced: the lack of restrictions
on the language results in the specification of models which may not even be
decidable and therefore will not be implementable. As noted in [48], Woo and
Lam’s approach is based on truth in extensions of arbitrary default theories,
which is known, even in the propositional case to be NP-complete, and in the
first order case, is worse than undecidable.

Starting from these observations, Jajodia et al. [48] worked on a proposal for
a logic-based language that attempted to balance flexibility and expressiveness
on the one side, and easy management and performance on the other. The lan-
guage allows the representation of different policies and protection requirements,
while at the same time providing understandable specifications, clear semantics
(guaranteeing therefore the behavior of the specifications), and bearable data
complexity. Their proposal for a Flexible Authorization Framework (FAF) iden-
tifies a polynomial time (in fact quadratic time) data complexity fragment of
default logic; thus resulting effectively implementable. The language identifies
the following predicates for the specification of authorizations. (Below s, o, and a
denote a subject, object, and action term, respectively, where a term is either a
constant value in the corresponding domain or a variable ranging over it).

cando(o,s,〈sign〉a) represents authorizations explicitly inserted by the security
administrator. They represent the accesses that the administrator wishes to
allow or deny (depending on the sign associated with the action).

dercando(o,s,〈sign〉a) represents authorizations derived by the system us-
ing logical rules of inference (modus ponens plus rules for stratified nega-
tion). Logical rules can express hierarchy-based authorization derivation
(e.g., propagation of authorizations from groups to their members) as well
as different implication relationships that may need to be represented.

do(o,s,〈sign〉a) definitely represents the accesses that must be granted or de-
nied. Intuitively, do enforces the conflict resolution and access decision poli-
cies, that is, it decides whether to grant or deny the access possibly solving
existing conflicts and enforcing default decisions (in the case where no au-
thorization has been specified for an access).

done(o,s,r,a,t) keeps the history of the accesses executed. A fact of the form
done(o,s,r,a,t) indicates that s operating in role r executed action a on
object o at time t.

error signals errors in the specification or use of authorizations; it can be used
to enforce static and dynamic constraints on the specifications.

In addition, the language considers predicates, called hie-predicates, for the
evaluation of hierarchical relationships between the elements of the data system
(e.g., user’s membership in groups, inclusion relationships between objects). The
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language also allows the inclusion of additional application-specific predicates,
called rel- predicates. These predicates can capture the possible different rela-
tionships, existing between the elements of the data system, that may need to be
taken into account by the access control system. Examples of these predicates
can be owner(user,object), which models ownership of objects by users, or
supervisor(user1,user2), which models responsibilities and controls between
users according to the organizational structure.

Authorization specifications are stated as logic rules defined on the predicates
of the language. To ensure clean semantics and implementability, the format of
the rules is restricted to guarantee (local) stratification of the resulting program
(see Figure 22).10 The stratification also reflects the different semantics given
to the predicates: cando will be used to specify basic authorizations, dercando
to enforce implication relationships and produce derived authorizations, and do
to take the final access decision. Stratification ensures that the logic program
corresponding to the rules has a unique stable model, which coincides with the
well founded semantics. Also, this model can be effectively computed in polyno-
mial time. The authors also present a materialization technique for producing
and storing the model corresponding to a set of logical rules. Materialization has
been usually coupled with logic-based authorization languages. Indeed, given a
logic program whose rules correspond to an authorization specification in the
given language, one can assess a request to execute a particular action on an
object by checking if it is true in the unique stable model of the logic program.
If so, the request is authorized, otherwise it is denied. However, when imple-
menting an algorithm to support this kind of evaluation, one needs to consider
the following facts:

– the request should be either authorized or denied very fast, and
– changes to the specifications are far less frequent than access requests.

Indeed, since access requests happen all the time, the security architec-
ture should optimize the processing of these requests. Therefore, Jajodia et
al. [48] propose implementing their FAF with a materialized view architecture,
which maintains the model corresponding to the authorization specifications.
The model is computed on the initial specifications and updated with incremen-
tal maintenance strategies.

8.2 Composition of Access Control Policies

In many real world situations, access control needs to combine restrictions inde-
pendently stated that should be enforced as one, while retaining their indepen-
dence and administrative autonomy. For instance, the global policy of a large
organization can be the combination of the policies of its different departments
and divisions as well as of externally imposed constraints (e.g., privacy reg-
ulations); each of these policies should be taken into account while remaining
10 A program is locally stratified if there is no recursion among predicates going through

negation.
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Stratum Predicate Rules defining predicate

0 hie-predicates base relations.
rel-predicates base relations.
done base relation.

1 cando body may contain done, hie-
and rel-literals.

2 dercando body may contain cando, dercando, done,
hie-, and rel- literals. Occurrences of
dercando literals must be positive.

3 do in the case when head is of the form
do( , ,+a) body may contain cando,
dercando, done, hie- and rel- literals.

4 do in the case when head is of the form
do(o, s,−a) body contains just one literal
¬do(o, s,+a).

5 error body may contain do, cando, dercando, done,
hie-, and rel- literals.

Fig. 22. Rule composition and stratification of the proposal in [48]

independent and autonomously managed. Another example is represented by the
emerging dynamic coalition scenarios where different parties, coming together
for a common goal for a limited time, need to merge their security requirements
in a controlled way while retaining their autonomy. Since existing frameworks
assume a single monolithic specification of the entire access control policy, the
situations above would require translating and merging the different component
policies into a single “program” in the adopted access control language. While
existing languages are flexible enough to obtain the desired combined behavior,
this method has several drawbacks. First, the translation process is far from
being trivial; it must be done very carefully to avoid undesirable side effects due
to interference between the component policies. Interference may result in the
combined specifications not reflecting correctly the intended restrictions. Second,
after translation it is not possible anymore to operate on the individual compo-
nents and maintain them autonomously. Third, existing approaches cannot take
into account incomplete policies, where some components are not (completely)
known a priori (e.g., when somebody else is to provide that component). Start-
ing from these observations, Bonatti et al. [20] make the point for the need of
a policy composition framework by which different component policies can be
integrated while retaining their independence. They propose an algebra for com-
bining security policies. Compound policies are formulated as expressions of the
algebra, constructed by using the following operators.

Addition merges two policies by returning their union. For instance, in an
organization composed of different divisions, access to the main gate can
be authorized by any of the administrator of the divisions (each of them
knows which users need access to reach their division). The totality of the
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accesses through the main gate to be authorized should then be the union
of the statements of each division. Intuitively, additions can be applied in
any situation where accesses can be authorized if allowed by any of the
component policies.

Conjunction merges two policies by returning their intersection. For instance,
consider an organization in which divisions share certain documents (e.g.,
clinical folders of patients). An access to a document may be allowed only
if all the authorities that have a say on the document agree on it. That is,
if the corresponding authorization triple belongs to the intersection of their
policies.

Subtraction restricts a policy by eliminating all the accesses in a second policy.
Intuitively, subtraction specifies exceptions to statements made by a policy,
and encompasses the functionality of negative authorizations in existing ap-
proaches.

Closure closes a policy under a set of derivation (i.e., implication) rules, w.r.t.
which the algebra is parametric. Rules can be, for example, expressed with
a logic-based language (e.g., [48]).

Scoping restriction restricts the application of a policy to a given set of sub-
jects, objects, and actions that satisfy certain properties (i.e., belong to a
given class). It is useful to enforce authority confinement (e.g., authoriza-
tions specified in a given component can be referred only to specific subjects
and objects).

Overriding replaces portion of a policy with another. For instance, a laboratory
policy may impose authorizations granted by the lab tutors to be overridden
by the department policy (which can either confirm the authorization or not)
for students appearing in a blacklist for infraction to rules.

Template defines a partially specified (i.e., parametric) policy that can be com-
pleted by supplying the parameters. Templates are useful for representing
policies where some components are to be specified at a later stage. For in-
stance, the components might be the result of further policy refinement, or
might be specified by a different authority.

Enforcement of compound policies is based on a translation from policy ex-
pressions into logic programs, which provide executable specifications compati-
ble with different evaluation strategies (e.g., run time, materialized view, partial
evaluation). The logic program simply provides an enforcement mechanism and
is transparent to the users, who can therefore enjoy the simplicity of algebra
expressions. The modularity of the algebra, where each policy can be seen as
a different component, provides a convenient way for reasoning about policies at
different levels of abstractions. Also, it allows for the support of heterogeneous
policies and policies that are unknown a priori and can only be queried at access
control time.

8.3 Certificate-Based Access Control

Today’s Globally Internetworked Infrastructure connects remote parties through
the use of large scale networks, such as the World Wide Web. Execution of ac-
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tivities at various levels is based on the use of remote resources and services,
and on the interaction between different, remotely located, parties that may
know little about each other. In such a scenario, traditional assumptions for
establishing and enforcing access control regulations do not hold anymore. For
instance, a server may receive requests not just from the local community of
users, but also from remote, previously unknown users. The server may not be
able to authenticate these users or to specify authorizations for them (with re-
spect to their identity). The traditional separation between authentication and
access control cannot be applied in this context, and alternative access control
solutions should be devised. A possible solution to this problem is represented
by the use of digital certificates (or credentials), representing statements cer-
tified by given entities (e.g., certification authorities), which can be used to
establish properties of their holder (such as identity, accreditation, or autho-
rizations) [39]. Trust-management systems (e.g., PolicyMaker [18], Keynote [17],
REFEREE [24], and DL [57]) use credentials to describe specific delegation of
trusts among keys and to bind public keys to authorizations. They therefore de-
part from the traditional separation between authentication and authorizations
by granting authorizations directly to keys (bypassing identities). Trust man-
agement systems provide an interesting framework for reasoning about trust
between unknown parties; however, assigning authorizations to keys, may result
limiting and make authorization specifications difficult to manage. A promising
direction exploiting digital certificates to regulate access control is represented by
new authorization models making the access decision of whether or not a party
may execute an access dependent on properties that the party may have, and
can prove by presenting one or more certificates (authorization certificates in [18]
being a specific kind of them). Besides a more complex authorization language
and model, there is however a further complication arising in this new scenario,
due to the fact that the access control paradigm is changing. On the one side, the
server may not have all the information it needs in order to decide whether or
not an access should be granted (and exploits certificates to take the decision).
On the other side, however, the requestor may not know which certificates she
needs to present to a (possibly just encountered) server in order to get access.
Therefore, the server itself should, upon reception of the request, return the
user with the information of what she should do (if possible) to get access. In
other words the system cannot simply return a “yes/no” access decision any-
more. Rather, it should return the information of the requisites that it requires
be satisfied for the access to be allowed. The certificates mentioned above are
one type of access requisites. In addition, other uncertified declarations (i.e., not
signed by any authority) may be required. For instance, we may be requested
our credit card number to perform an electronic purchase; we may be requested
to fill in a profile when using public or semipublic services (e.g., browsing for
flight schedules). The access control decision is therefore a more complex process
and completing a service may require communicating information not related to
the access itself, but related to additional restrictions on its execution, possibly
introducing a form of negotiation [21,72,89]. Such information communication
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Fig. 23. Client/server interplay in [21]

makes the picture even more complex, since it introduces two new protection
requirements (in addition to the obvious need of protecting resources managed
by the server from unauthorized or improper access):

Client portfolio protection: the client (requestor) may not be always will-
ing to release information and digital certificates to other parties [65], and
may therefore impose restrictions on their communication. For this purpose,
a client may—like a server—require the counterpart to fulfill some require-
ments. For instance, a client may be willing to release a AAA membership
number only to servers supplying a credential stating that the travel agent
is approved by AAA.

Server’s state protection: the server, when communicating requisites for ac-
cess to a client, wants to be sure that possible sensitive information about
its access control policy is not disclosed. For instance, a server may require
a digitally signed guarantee to specific customers (who appear blacklisted
for bad credit in some database it has access to); the server should simply
ask this signed document, it should not tell the customer that she appears
blacklisted.

The first proposals investigating the application of credential-based access
control regulating access to a server, were made by Winslett et al. [82,89]. Ac-
cess control rules are expressed in a logic language and rules applicable to an
access can be communicated by the server to clients. The work was also extended
in [88,93] investigating trust negotiation issues and strategies that a party can
apply to select credentials to submit to the opponent party in a negotiation. In
particular, [88] distinguishes between eager and parsimonious credential release
strategies. Parties applying the first strategy turn over all their credentials if
the release policy for them is satisfied, without waiting for the credentials to be
requested. Parsimonious parties only release credentials upon explicit request by
the server (avoiding unnecessary releases). Yu et al. [93] present a prudent nego-
tiation strategy to the goal of establishing trust among parties, while avoiding
disclosure of irrelevant credentials.
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A credential-based access control is also presented by Bonatti and Samarati
in [21]. They propose a uniform framework for regulating service access and in-
formation disclosure in an open, distributed network system like the Web. Like in
previous proposals, access regulations are specified as logical rules, where some
predicates are explicitly identified. Besides credentials, the proposal also allows
to reason about declarations (i.e., unsigned statements) and user-profiles that the
server can maintain and exploit for taking the access decision. Communication
of requisites to be satisfied by the requestor is based on a filtering and renaming
process applied on the server’s policy, which exploits partial evaluation tech-
niques in logic programs. The filtering process allows the server to communicate
to the client the requisites for an access, without disclosing possible sensitive in-
formation on which the access decision is taken. The proposal allows also clients
to control the release of their credentials, possibly making counter-requests to the
server, and releasing certain credentials only if their counter-requests are satis-
fied (see Figure 23). Client-server interplay is limited to two interactions to allow
clients to apply a parsimonious strategy (i.e., minimizing the set of information
and credentials released) when deciding which set credentials/declarations re-
lease among possible alternative choices they may have.

While all these approaches assume access control rules to be expressed in
logic form, often the people specifying the security policies are unfamiliar with
logic based languages. An interesting aspect to be investigated concerns the
definition of a language for expressing and exchanging policies based on a high
level formulation that, while powerful, can be easily interchangeable and both
human and machine readable. Insights in this respect can be taken from recent
proposals expressing access control policies as XML documents [26,27].

All the proposals above open new interesting directions in the access control
area.
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