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ABSTRACT 
As the  recent denial-of-service at tacks on several ma jo r  In- 
te rnet  sites have shown us, no open compu te r  network is 
immune  from intrusions. The  wireless ad-hoc network is 
par t icular ly  vulnerable  due to its features of open medium,  
dynamic  changing topology, cooperat ive  algori thms,  lack of 
central ized moni tor ing  and management  point,  and lack of 
a clear line of defense. Many of the intrusion detect ion tech- 
niques developed on a fixed wired network are not  appl icable  
in this new environment .  How to do it differently and ef- 
fectively is a challenging research problem. In this paper ,  
we first examine  the  vulnerabil i t ies  of a wireless ad-hoc net-  
work, the  reason why we need intrusion detect ion,  and the  
reason why the  current  me thods  cannot  be applied directly. 
We then  describe the  new intrusion detect ion and response 
mechanisms tha t  we are developing for wireless ad-hoc net-  
works. 

1. INTRODUCTION 
A wireless ad-hoc network consists of a collection of "peer" 
mobile  nodes tha t  are capable of communica t ing  with  each 
o ther  wi thou t  help f rom a fixed infrastructure .  The  inter-  
connect ions between nodes are capable of changing on a con- 
t inual  and arb i t ra ry  basis. Nodes within each o ther ' s  radio 
range communica te  direct ly via wireless links, while those 
tha t  are far apar t  use o ther  nodes as relays. Nodes  usual ly 
share the  same physical media; they  t r ansmi t  and acquire  
signals at the same frequency band, and follow the  same 
hopping  sequence or spreading code. The  data- l ink-layer  
funct ions manage  the  wireless link resources and coordina te  
med ium access among  neighboring nodes. The  med ium ac- 
cess control  (MAC) protocol  is essential to a wireless ad-hoc 
network because it allows mobile nodes to share a common  
broadcast  channel.  The  network-layer funct ions main ta in  
the mul t i -hop communica t ion  pa ths  across the  network; all 
nodes must  funct ion as routers tha t  discover and main ta in  
routes  to other  nodes in the  network. Mobil i ty  and volatil-  
i ty are hidden from the applications so tha t  any node can 
communica t e  with any other  node as  if everyone were in a 
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fixed wired network.  Appl icat ions  of ad-hoc networks range 
from mil i tary tact ical  operat ions  to civil rapid deployment  
such as emergency search-and-rescue missions, da t a  collec- 
t ion /sensor  networks, and ins tantaneous  c l a s s room/mee t ing  
room applications.  

The  na ture  of wireless ad-hoc networks makes them very 
vulnerable  to an adversary ' s  malicious attacks. First  of all, 
the  use of wireless links renders  a wireless ad-hoc network 
susceptible to a t tacks  ranging from passive eavesdropping to 
act ive interfering. Unlike wired networks where an adver-  
sary must  gain physical  access to the network wires or pass 
through several lines of defense at firewalls and gateways,  
at tacks on a wireless ad-hoc network can come from all di- 
rections and target  at any node. Damages  can include leak- 
ing secret informat ion,  message contaminat ion,  and node  
impersonat ion.  All these mean  tha t  a wireless ad-hoc net-  
work will not  have a clear line of defense, and every node 
must  be prepared  for encounters  with an adversary direct ly  
or indirectly. 

Second, mobile nodes axe au tonomous  units tha t  are capa- 
ble of roaming independently.  This  means tha t  nodes wi th  
inadequate  physical  protect ion are recept ive to being cap- 
tured,  compromised,  and hijacked. Since t racking down a 
par t icular  mobi le  node in a large scale ad-hoc network can- 
not  be done easily, a t tacks  by a compromised  node from 
within the  network are far more damaging and much harder  
to detect.  Therefore,  any node in a wireless ad-hoc network 
must  be prepared  to opera te  in a mode  tha t  t rus ts  no peer. 

Third,  decis ion-making in ad-hoc networks is usually decen- 
tral ized and m a n y  ad-hoc network algor i thms rely on the 
cooperat ive  par t ic ipa t ion  of all nodes. The  lack of central-  
ized author i ty  means  tha t  the  adversaries can exploit  this 
vulnerabi l i ty  for new types  of at tacks designed to break the  
cooperat ive  algori thms.  

For example,  the  current  MAC protocols for wireless ad- 
hoc networks are all vulnerable.  Al though there  are many  
MAC protocols,  the  basic working principles are similar. In 
a content ion-based method ,  each node must  compe te  for 
control of the t ransmission channel each t ime it sends a mes- 
sage. Nodes must  s t r ic t ly  follow the pre-defined procedure  
to avoid collisions or to recover from them. In a content ion-  
free method,  each node must  seek from all o ther  nodes a 
unanimous  promise of an exclusive use of the channel  re- 
source, on a one- t ime or recurr ing basis. Regardless of the  
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type of MAC protocol, if a node behaves maliciously, the 
MAC protocol can break down in a scenario resembling a 
denial-of-service attack. Although such attacks are rare in 
wired networks because the physical networks and the MAC 
layer are isolated from the outside world by layer-3 gate- 
ways/firewalls, every mobile node is completely vulnerable 
in the wireless open medium. 

Ad-hoc routing presents another vulnerability. Most ad-hoc 
routing protocols are also cooperative in nature[14]. Un- 
like with a wired network, where extra protection can be 
placed on routers and gateways, an adversary who hijacks 
an ad-hoc node could paralyze the entire wireless network by 
disseminating false routing information. Worse, such false 
routing information could result in messages from all nodes 
being fed to the compromised node. 

Intrusion prevention measures, such as encryption and au- 
thentication, can be used in ad-hoc networks to reduce intru- 
sions, but  cannot eliminate them. For example, encryption 
and authentication cannot defend against compromised mo- 
bile nodes, which carry the private keys. Integrity validation 
using redundant  information (from different nodes), such as 
those being used in secure routing [16, 17], also relies on 
the trustworthiness of other nodes, which could likewise be 
a weak link for sophisticated attacks. 

The history of security research has taught us a valuable les- 
son - no matter  how many intrusion prevention measures are 
inserted in a network, there are always some weak links that  
one could exploit to break in. Intrusion detection presents 
a second wall of defense and it is a necessity in any high- 
survivability network. 

In summary, a wireless ad-hoc network has inherent vulner- 
abilities that  are not easily preventable. To build a highly 
secure wireless ad-hoc network, we need to deploy intrusion 
detection and response techniques, and further research is 
necessary to adapt these techniques to this new environ- 
ment, from their original applications in fixed wired network. 
In this paper, we propose our new model for intrusion de- 
tection and response in mobile, ad-hoc wireless networks. 
We are currently investigating the use of cooperative statis- 
tical anomaly detection models for protection from attacks 
on ad-hoc routing protocols, on wireless MAC protocols, or 
on wireless applications and services. We are integrating 
them into a cross-layer defense system and are investigating 
its effectiveness, efficiency, and scalability. 

2. BACKGROUND OF INTRUSION DETEC- 
TION 

As network-based computer systems play increasingly vital 
roles in modern society, they have become the targets of 
our enemies and criminals. When an intrusion (defined as 
"any set of actions that at tempt to compromise the integrity, 
confidentiality, or availability of a resource" [4]) takes place, 
intrusion prevention techniques, such as encryption and au- 
thentication (e.g., using passwords or biometrics), are usu- 
ally the first line of defense. However, intrusion preven- 
tion alone is not sufficient because as systems become ever 
more complex, while security is still often the after-thought, 
there are always exploitable weaknesses in the systems due 
to design and programming errors, or various "socially engi- 

neered" penetration techniques (as illustrated in the recent 
"I Love You" virus). For example, even though they were 
first reported many years ago, exploitable "buffer overflow" 
security holes, which can lead to an unauthorized root shell, 
still exist in some recent system softwares. Furthermore, as 
illustrated by recent Distributed Denial-of-Services (DDOS) 
attacks launched against several major Internet sites where 
security measures were in place, the protocols and systems 
that are designed to provide services (to the public) are in- 
herently subject to attacks such as DDOS. Intrusion detec- 
tion can be used as a second wall to protect network systems 
because once an intrusion is detected, e.g., in the early stage 
of a DDOS attack, response can be put into place to min- 
imize damages, gather evidence for prosecution, and even 
launch counter-attacks. 

The primary assumptions of intrusion detection are: user 
and program activities are observable, for example via sys- 
tem auditing mechanisms; and more importantly, normal 
and intrusion activities have distinct behavior. Intrusion 
detection therefore involves capturing audit data and rea- 
soning about the evidence in the data to determine whether 
the system is under attack. Based on the type of audit 
data used, intrusion detection systems (IDSs) can be cate- 
gorized as network-based or host-based. A network-based 
IDS normally runs at the gateway of a network and "cap- 
tures" and examines network packets that  go through the 
network hardware interface. A host-based IDS relies on op- 
erating system audit data to monitor and analyze the events 
generated by programs or users on the host. Intrusion de- 
tection techniques can be categorized into misuse detection 
and anomaly detection. 

Misuse detection systems, e.g., IDIOT [8] and STAT [5], 
use patterns of well-known attacks or weak spots of the sys- 
tem to match and identify known intrusions. For example, 
a signature rule for the "guessing password attack" can be 
"there are more than 4 failed login at tempts within 2 min- 
utes". The main advantage of misuse detection is that it can 
accurately and efficiently detect instances of known attacks. 
The main disadvantage is that  it lacks the ability to detect 
the truly innovative (i.e., newly invented) attacks. 

Anomaly detection systems, for example, IDES [12], flag 
observed activities that  deviate significantly from the es- 
tablished normal usage profiles as anomalies, i.e., possible 
intrusions. For example, the normal profile of a user may 
contain the averaged frequencies of some system commands 
used in his or her login sessions. If for a session that is being 
monitored, the frequencies are significantly lower or higher, 
then an anomaly alarm will be raised. The main advantage 
of anomaly detection is that it does not require prior knowl- 
edge of intrusion and can thus detect new intrusions. The 
main disadvantage is that  it may not be able to describe 
what the attack is and may have high false positive rate. 

Conceptually, an intrusion detection model, i.e., a misuse 
detection rule or a normal profile, has these two components: 

• the features (or attributes, measures), e.g., "the num- 
ber of failed login attempts",  "the averaged frequency 
of the 9ce command", etc., that  together describe a 
logical event, e.g., a user login session; 
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• the modeling algorithm, e.g., rule-based pattern match- 
ing, that  uses the features to identify intrusions. 

trusion detection may find it increasingly difficult to distin- 
guish false alarms from real intrusions. 

Defining a set of predictive features that accurately capture 
the representative behaviors of intrusive or normal activities 
is the most important  step in building an effective intrusion 
detection model, and can be independent of the design of 
modeling algorithms. 

In 1998, DARPA (U.S. Defense Advanced Research Projects 
Agency) sponsored the first Intrusion Detection Evaluation 
to survey the state-of-the-art of research in intrusion detec- 
tion [11]. The results indicated that the research systems 
were much more effective than the leading commercial sys- 
tems. However, even the best research systems failed to 
detect a large number of new attacks, including those that 
led to unauthorized user or root access. 

It is very obvious that the enemies, knowing that intrusion 
prevention and detection systems are installed in our net- 
works, will a t tempt to develop and launch new types of at- 
tacks. In anticipation of these trends, IDS researchers are 
designing new sensors and hence new audit data sources 
and features, new anomaly detection algorithms, techniques 
for combining anomaly and misuse detection, and system 
architectures for detecting distributed and coordinated in- 
trusions. 

3. PROBLEMS OF CURRENT IDS TECH- 
NIQUES 

The vast difference between the two networks makes it very 
difficult to apply intrusion detection techniques developed 
for a fixed wired network to an ad-hoc wireless network. 
The most important  difference is perhaps that  the latter 
does not have a fixed infrastructure, and today's network- 
based IDSs, which rely on real-time traffic analysis, can no 
longer function well in the new environment. Compared 
with wired networks where traffic monitoring is usually done 
at switches, routers and gateways, an ad-hoc network does 
not have such traffic concentration points where the IDS 
can collect audit data for the entire network. Therefore, at 
any one time, the only available audit trace will be limited 
to communication activities taking place within the radio 
range, and the intrusion detection algorithms must be made 
to work on this partial and localized information. 

In summary, we must answer the following research ques- 
tions in developing a viable intrusion detection system for 
wireless ad-hoc networks: 

What is a good system architecture for building in- 
trusion detection and response systems that fits the 
features of wireless ad-hoc networks? 

• What are the appropriate audit data sources? How do 
we detect anomaly based on partial, local audit traces 
- if they are the only reliable audit source? 

What is a good model of activities in a wireless commu- 
nication environment that  can separate anomaly when 
under attacks from the normalcy? 

For the rest of this paper we will address these challenging 
problems. 

4. NEW ARCHITECTURE 
Intrusion detection and response systems should be both 
distributed and cooperative to suite the needs of wireless 
ad-hoc networks. In our proposed architecture (Figure 1), 
every node in the wireless ad-hoc network participates in 
intrusion detection and response. Each node is responsible 
for detecting signs of intrusion locally and independently, 
but neighboring nodes can collaboratively investigate in a 
broader range. 

In the systems aspect, individual IDS agents are placed on 
each and every node. Each IDS agent runs independently 
and monitors local activities (including user and systems 
activities, and communication activities within the radio 
range). It detects intrusion from local traces and initiates 
response. If anomaly is detected in the local data, or if 
the evidence is inconclusive and a broader search is war- 
ranted, neighboring IDS agents will cooperatively partici- 
pate in global intrusion detection actions. These individual 
IDS agent collectively form the IDS system to defend the 
wireless ad-hoc network. 

The second big difference is in the communication pattern 
in a wireless ad-hoc network. Wireless users tend to be 
stingy about communication due to slower links, limited 
bandwidth, higher cost, and battery power constraints. Dis- 
connected operations [15] are very common in wireless net- 
work applications, and so is location-dependent computing 
or other techniques that are solely designed for wireless net- 
works and seldom used in the wired environment. All these 
suggest that  the anomaly models for wired network cannot 
be used, as is, in this new environment. 

Furthermore, there may not be a clear separation between 
normalcy and anomaly in wireless ad-hoc networks. A node 
that sends out false routing information could be the one 
that has been compromised, or merely the one that is tem- 
porarily out of sync due to volatile physical movement. In- 

The internal of an IDS agent can be fairly complex, but 
conceptually it can be structured into six pieces (Figure 2). 
The data collection module is responsible for gathering lo- 
cal audit traces and activity logs. Next, the local detection 
engine will use these data to detect local anomaly. Detec- 
tion methods that need broader data sets or that require 
collaborations among IDS agents will use the cooperative 
detection engine. Intrusion response actions are provided 
by both the local response and global response modules. 
The local response module triggers actions local to this mo- 
bile node, for example an IDS agent alerting the local user, 
while the global one coordinates actions among neighbor- 
ing nodes, such as the IDS agents in the network electing 
a remedy action. Finally, a secure communication module 
provides a high-confidence communication channel among 
IDS agents. 
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Figure 2: A C o n c e p t u a l  Model for a n  IDS A g e n t  

tection rules across a wireless ad-hoc network in a secure and 
reliable manner is never easy. Therefore, we believe that the 
IDS for a wireless ad-hoc network should mainly use statisti- 
cal anomaly detection techniques. In general, the procedure 
of building such an anomaly detection model is the follow- 
ing: 

the normal profiles (i.e., the normal behavior patterns) 
are computed using trace data from a "training" pro- 
cess where all activities are normal; 

the deviations from the normal profiles are recorded 
during a "testing" process where some normal and ab- 
normal activities (if available) are included; 

a detection model is computed from the deviation data 
to distinguish normalcy and anomalies; although there 
will always be "new" normal activities that  have not 
been observed before, their deviations from the normal 
profiles should be much smaller than those of intru- 
sions. 

4.1 Data  Col lect ion 
The first module, local data collection, gathers streams of 
real-time audit data from various sources. Depending on the 
intrusion detection algorithms, these useful data streams can 
include system and user activities within the mobile node, 
communication activities by this node, as well as communi- 
cation activities within the radio range and observable by 
this node. Therefore, multiple data collection modules can 
coexist in one IDS agents to provide multiple audit streams 
for a multi-layer integrated intrusion detection method (Sec- 
tion 6). 

4.2 Local  Detect ion  
Tim local detection engine analyzes the local data traces 
gathered by the local data collection module for evidence 
of anomalies. Because it is conceivable that the number of 
newly created attack types mounted on wireless networks 
will increase quickly as more and more network appliances 
become wireless, we cannot simply employ a few expert rules 
that axe only capable of detecting the few known types of 
attack. Furthermore, updating the rule-base with new de- 

In previous work on fixed wired networks [10], we have devel- 
oped efficient data mining algorithms for computing normal 
traffic patterns from T C P / I P  trace data (i.e., t cpdump [6] 
output),  as well as classification techniques for building mis- 
use and anomaly detection models. The results from the 
1998 DARPA Evaluation showed that  the detection models 
produced by our system had one of the best overall perfor- 
mances among the paxticipating systems. The main chal- 
lenges here are how to define the trace data, and how to de- 
termine the types of patterns that  best describe the normal 
behavior. While there are many anomaly detection models 
for user behavior and system activities (e.g., [2, 3, 9]), our 
focus here is on new models for wireless ad-hoc networks 
(Section 5). 

4.3 Cooperat ive  Detect ion  
A n y  node that detects locally a known intrusion or anomaly 
with strong evidence (i.e., the detection rule triggered has a 
very high accuracy rate), can determine independently that 
the network is under attack and can initiate a response. 
However, if a node detects an anomaly or intrusion with 
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weak evidence, or the evidence is inconclusive but warrants 
broader investigation, it can initiate a cooperative global 
intrusion detection procedure. This procedure works by 
propagating the intrusion detection state information among 
neighboring nodes (or further downward if necessary). 

The intrusion detection state information can range from a 
mere level-of-confidence value such as 

• "With p% confidence, node A concludes from its local 
data that there is an intrusion" 

• "With p% confidence, node A concludes from its local 
data and neighbor states that there is an intrusion" 

• "With p% confidence, node A, B, C, ... collectively 
conclude that there is an intrusion" 

to a more specific state that  lists the suspects, like 

A wireless network is highly dynamic because nodes can 
move in and out of the network. Therefore, while each node 
uses intrusion/anomaly reports from other nodes, it does not 
rely on fixed network topology or membership information 
in the distributed detection process. It is a simple majority 
voting scheme where any node that  detects an intrusion can 
initiate a response. 

4.4 Intrusion Response 
The type of intrusion response for wireless ad-hoc networks 
depends on the type of intrusion, the type of network pro- 
tocols and applications, and the confidence (or certainty) in 
the evidence. For example, here is a few likely response: 

• Re-initializing communication channels between nodes 
(e.g, force re-key). 

• Identifying the compromised nodes and re-organizing 
the network to preclude the promised nodes. 

• "With p% confidence, node A concludes from its local 
data that node X has been compromised" 

or to a complicated record including the complete evidence. 

As the next step, we can derive a distributed consensus 
algorithm to compute a new intrusion detection state for 
this node, using other nodes' state information received re- 
cently. The algorithm can include a weighted computation 
under the assumption that nearby nodes have greater effects 
than far away nodes, i.e., giving the immediate neighbors the 
highest values in evaluating the intrusion detection states. 

For example, a majority-based distributed intrusion detec- 
tion procedure can include the following steps: 

• the node sends to neighboring node an "intrusion (or 
anomaly) state request"; 

= each node (including the initiation node) then propa- 
gates the state information, indicating the likelihood 
of an intrusion or anomaly, to its immediate neighbors; 

• each node then determines whether the majority of the 
received reports indicate an intrusion or anomaly; if 
yes, then it concludes that  the network is under attack; 

• any node that detects an intrusion to the network can 
then initiate the response procedure. 

The rationales behind this scheme are as follows. Audit 
data from other nodes cannot be trusted and should not be 
used because the compromised nodes can send falsified data. 
However, the compromised nodes have no incentives to send 
reports of intrusion/anomaly because the intrusion response 
may result in their expulsion from the network. Therefore, 
unless the majority of the nodes are compromised, in which 
case one of the legitimate nodes will probably be able to de- 
tect the intrusion with strong evidence and will respond, the 
above scheme can detect intrusion even when the evidence 
at individual nodes is weak. 

For example, the IDS agent can notify the end-user, who 
may in turn do his/her own investigation and take appropri- 
ate action. It can also send a "re-authentication" request to 
all nodes in the network to prompt the end-users to authenti- 
cate themselves (and hence their wireless nodes), using out- 
of-bound mechanisms (like, for example, visual contacts). 
Only the re-authenticated nodes, which may collectively ne- 
gotiate a new communication channel, will recognize each 
other as legitimate. That  is, the compromised/malicious 
nodes can be excluded. 

5. ANOMALY DETECTION IN WIRELESS 
AD-HOC NETWORKS 

In this section, we discuss how to build anomaly detection 
models for wireless networks. Detection based on activities 
in different network layers may differ in the format and the 
amount of available audit data as well as the modeling algo- 
rithms. However, we believe that the principle behind the 
approaches will be the same. To illustrate our approach, we 
focus our discussions on ad-hoc routing protocols. 

5.1 Detecting Abnormal Updates to Routing 
Tables 

The main requirement of an anomaly detection model is low 
false positive rate, calculated as the percentage of normalcy 
variations detected as anomalies, and high true positive rate, 
calculated as the percentage of anomalies detected. We need 
to first determine the trace data to be used that will bear evi- 
dence of normalcy or anomaly. For ad-hoc routing protocols, 
since the main concern is that the false routing information 
generated by a compromised node will be disseminated to 
and used by other nodes, we can define the trace data to de- 
scribe, for each node, the normal (i.e., legitimate) updates 
of routing information. 

A routing table usually contains, at the minimum, the next 
hop to each destination node and the distance (number of 
hops). A legitimate change in the routing table can be 
caused by the physical movement(s) of node(s) or network 
membership changes. For a node, its own movement and the 
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Distance Direction Velocity PCR PCH 
0.01 S 0.1 20 15 
10 S 2O 80 5O 
0.02 N 0.1 0 0 

Table 1: S a m p l e  Trace Data  for Ad-Hoc  Rout ing  

PCR deviation PCH deviation Class 
0.0 0.0 normal 
0.1 0.0 normal 
0.2 0.2 normal 
0.9 0.5 abnormal 
0.3 0.1 normal 

change in its own routing table axe the only reliable informa- 
tion that  it can trust. Hence, we use data on the node's phys- 
ical movements and the corresponding change in its routing 
table as the basis of the trace data. The physical movement 
is measured by distance, direction, and velocity (this data 
can be obtained by a built-in GPS device). The routing ta- 
ble change is measured by the percentage of changed routes 
(PCR), and the (positive or negative) percentage of changes 
in the sum of hops of all the routes (PCH). We use per- 
centages as measurements because of the dynamic nature of 
wireless networks (i.e., the number of nodes/routes is not 
fixed). Table 1 shows some fictional trace data for a node. 

During the "training" process, where a diversity of normal 
situations are simulated, the trace data is gathered for each 
node. The trace data sets of all nodes in the training network 
are then aggregated into a single data set, which describes 
all normal changes in routing tables for all the nodes. A 
detection model which is learned from this aggregated data 
set will therefore be capable of operating on any node in the 
network. 

A normal profile on the trace data in effect specifies the cor- 
relation of physical movements of the node and the changes 
in the routing table. We can use the following scheme to 
compute the normal profile: 

denote PCR the class (i.e. concept), and distance, di- 
rection, velocity, and PCH the features describing the 
concept; 

use n classes to represent the PCR values in n ranges, 
for example, we can use 10 classes each representing 
10 percentage points - that  is, the trace data belongs 
to n classes; 

• apply a classification algorithm to the data to learn a 
classifier for PCR; 

• repeat the above for PCH, that is, learn a classifier for 
PCH; 

A classification algorithm, e.g., R IPPER [1], can use the 
most discriminating feature values to describe each concept. 
For example, when using PCR as the concept, RIPPER can 
output  classification rules in the form of: "if (distance 
0.01 AND PCH _~ 20) then PCR = 2; else if ...". Each 
classification rule (an "if") has a "confidence" value, calcu- 
lated as the percentage of records that match both the rule 
condition and rule conclusion out of those that match the 
rule condition. The classification rules for PCR and PCH 
together describe what are the (normal) conditions that cor- 
relate with the (amount of) routing table changes. We use 
these rules as the normal profiles. 

Table 2: Sample  Dev ia t ion  D a t a  

Checking an observed trace data record (that records a rout- 
ing table update) with the profile involves applying the clas- 
sification rules to the record. A misclassification, e.g., when 
the rules say it is "PCR = 3" but  in fact it is "PCR = 5", 
is counted as a violation. We can use the "confidence" of 
the violated rule as the "deviation score" of the record. In 
the "testing" process, the deviation scores axe recorded. For 
example, if abnormal data is available, we can have devia- 
tion data like those shown in Table 2. We can then apply a 
classification algorithm to compute a classifier, a detection 
model, that uses the deviation scores to distinguish abnor- 
mal from normal. 

If abnormal data is not available, we can compute the nor- 
mal clusters of the deviation scores, where each score pair is 
represented by a point (PCR deviation, PCH deviation) in 
the two-dimensional space, e.g., (0.0, 0.0), (0.2, 0.2), (0.3, 
0.1), etc. The "outliers", i.e., those that  do not belong to 
any normal cluster, can then be considered as anomalies. 
Clustering is often referred to as "un-supervised learning" 
because the target clusters are not known a priori. Its dis- 
advantage is that the computation (i.e., the formation) of 
clusters is very time consuming. If the application envi- 
ronment allows a tolerable false alarm rate, e.g., 2%, then 
the clustering algorithm can be parameterized to terminate 
when sufficient, e.g., greater than 98%, points are in proper 
clusters. 

A poor performance of the anomaly detection model, e.g., a 
higher than acceptable false alarm rate, indicates that the 
data gathering (including both "training" and "testing" pro- 
cesses) is not sufficient, and/or  the features and the model- 
ing algorithms need to be refined. Therefore, repeated trials 
may be needed before a good anomaly detection model is 
produced. 

In the discussion thus far, we have used only the minimal 
routing table information in the anomaly detection model 
to illustrate our approach, which can be applied to all rout- 
ing protocols. For a specific protocol, we can use additional 
routing table information and include new features in the 
detection model to improve the performance. For example, 
for DSR ad-hoc routing protocol [7, 13], we can add source 
route information (the complete, ordered sequence of net- 
work hops leading to the destination). We can also add pre- 
dictive features according to the "temporal and statistical" 
patterns among the routing table updates, following the sim- 
ilar feature construction process we used to build intrusion 
detection models for wired networks [10]. For example, for 
a wired T C P / I P  network, a "SYN-flood" DOS attack has a 
pattern which indicates that a lot of half-open connections 
are at tempted against a service in a short time span. Ac- 
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cordingly, a feature, "for the past 2 seconds, the percentage 
of connections to the same service that are half-open" was 
constructed and had been proved to be highly predictive. 
Similarly, in a wireless network, if an intrusion results in a 
large number of routing table updates, we can add a feature 
that measures the frequency (how often) the updates take 
place. 

Our objective in this study is to lead to a better understand- 
ing of the important and challenging issues in intrusion de- 
tection for ad-hoc routing protocols. First, using a given set 
of training, testing, and evaluation scenarios, and modeling 
algorithms (e.g., with RIPPER as the classification algo- 
ri thm for protocol trace data and "nearest neighbor" as the 
clustering algorithm for deviation scores), we can identify 
which routing protocol, with potentially all its routing table 
information used, can result in better performing detection 
models. This will help answer the question "what informa- 
tion should be include in the routing table to make intrusion 
detection effective." This finding can be used to design more 
robust routing protocols. Next, using a given routing proto- 
col, we can explore the feature space and algorithm space to 
find the best performing model. This will give insight to the 
general practices of building intrusion detection for wireless 
networks. 

5.2 Detecting Abnormal Activities in Other 
Layers 

Anomaly detection for other layers of the wireless networks, 
e.g., the MAC protocols, the applications and services, etc., 
follows a similar approach. For example, the trace data for 
MAC protocols can contain the following features: for the 
past s seconds, the total number of channel requests, the 
total number of nodes making the requests, the largest, the 
mean, and the smallest of all the requests, etc. The class 
can be the range (in the number) of the current requests by 
a node. A classifier on this trace data describes the normal 
context (i.e. history) of a request. An anomaly detection 
model can then be computed, as a classifier or clusters, from 
the deviation data. 

Similarly, at the wireless application layer, the trace data 
can use the service as the class (i.e., one class for each ser- 
vice), and can contain the following features: for the past s 
seconds, the total number of requests to the same service, 
the number of different services requested, the average dura- 
tion of the service, the number of nodes that requested (any) 
service, the total number of service errors, etc. A classifier 
on the trace data then describes for each service the normal 
behaviors of its requests. 

Many attacks generate different statistical patterns than 
normal requests. Since the features described above are de- 
signed to capture the statistical behavior of the requests, the 
attacks, when examined using the feature values, will have 
large deviations than the normal requests. For example, 
compared with normal requests to MAC or an application- 
level service, DOS attacks via resource exhaustion normally 
involve a huge number of requests in a very short period of 
time; a DDOS has the additional tweak that it comes from 
many different nodes. 

6. MULTI-LAYER INTEGRATED INTRU- 
SION DETECTION AND RESPONSE 

Traditionally, IDSs use data only from the lower layers: 
network-based IDSs analyze T C P / I P  packet data and host- 
based IDSs analyze system call data. This is because in 
wired networks, application layer firewalls can effectively 
prevent many attacks, and application-specific modules, e.g., 
credit card fraud detection systems, have also been devel- 
oped to guard the mission-critical services. 

In the wireless networks, there are no firewalls to protect 
the services from attack. However, intrusion detection in 
the application layer is not only feasible, as discussed in the 
previous section, but also necessary because certain attacks, 
for example, an attack that tries to create an unauthorized 
access "back-door" to a service, may seem perfectly legiti- 
mate to the lower layers, e.g., the MAC protocols. We also 
believe that some attacks may be detected much earlier in 
the application layer, because of the richer semantic infor- 
mation available, than in the lower layers. For example, for 
a DOS attack, the application layer may detect very quickly 
that  a large number of incoming service connections have no 
actual operations or the operations don' t  make sense (and 
can be considered as errors); whereas the lower layers, which 
rely only on information about the amount of network traf- 
fic (or the number of channel requests), may take a longer 
while to recognize the unusually high volume. 

Given that there are vulnerabilities in multiple layers of 
wireless networks and that an intrusion detection module 
needs to be placed at each layer on each node of a network, 
we need to coordinate the intrusion detection and response 
efforts. We use the following integration scheme: 

if a node detects an intrusion that  affects the entire 
network, e.g., when it detects an attack on the ad 
hoc routing protocols, it initiates the re-authentication 
process to exclude the compromised/malicious nodes 
from the network; 

if a node detects a (seemingly) local intrusion at a 
higher layer, e.g., when it detects attacks to one of 
its services, lower layers are notified. The detection 
modules there can then further investigate, e.g., by 
initiating the detection process on possible attacks on 
ad hoc routing protocols, and can respond to the at- 
tack by blocking access from the offending node(s) and 
notifying other nodes in the network of the incident. 

In this approach, the intrusion detection module at each 
layer still needs to function properly, but detection on one 
layer can be initiated or aided by evidence from other layers. 
As a first cut of our experimental research, we allow the 
evidence to flow from one layer to its (next) lower layer by 
default, or to a specific lower layer based on the application 
environment. 

The "augmented" versions of the detection model at a lower 
level are constructed as follows. In the "testing" process, 
the anomaly decision, i.e., either 1 for "yes" or 0 for "no" 
from the upper layer is inserted into the deviation score of 
the lower level, for example, (0.1, 0.1) now becomes (0.1, 
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0.1, 0). In other words, the deviation da ta  also carries the 
extra  information passed from the upper level. An anomaly 
detection model built from the augmented da ta  therefore 
combines the bodies of evidence from the upper layers and 
the current layer and can make a more informed decision. 
The intrusion report  sent to other node for cooperative de- 
tection also includes a vector of the information from the 
layers. 

Wi th  these new changes, the lower layers now need more 
than one anomaly detection model: one tha t  relies on the 
da ta  of the current layer and therefore indirectly uses ev- 
idence from the lower layers, and the augmented one tha t  
also considers evidence from the upper  layer. 

The multi-layer integration enables us to analyze the at tack 
scenario in its entirety and as a result, we can achieve bet-  
ter performance in terms of both  higher true positive and 
lower false positive rates. For example, a likely at tack sce- 
nario is tha t  an enemy takes control of the mobile unit of 
a user (by physically disable him or her), and then uses 
some system commands to send falsified routing informa- 
tion. A detection module tha t  monitors user behavior, e.g., 
via command usage, can detect  this event and immediately 
(i.e., before further damage can be done) cause the detection 
module for the routing protocols to initiate the global detec- 
tion and response, which can result in the exclusion of this 
compromised unit. As another example, suppose the users 
are responding to a fire alarm, which is a rare event and may 
thus cause a lot of unusual movements and hence updates  
to the routing tables. However, if there is no indication that  
a user or a system software has been compromised, each in- 
trusion report  sent to other nodes will have a "clean" vector 
of upper layer indicators, and thus the detection module for 
the routing protocols can conclude tha t  the unusual updates  
may be legitimate. 

7. CONCLUSION 
We have argued tha t  any secure network will have vulner- 
abili ty tha t  an adversary could exploit. This is especially 
true for wireless ad-hoc networks. Intrusion detection can 
compliment intrusion prevention techniques (such as encryp- 
tion, authentication, secure MAC, secure routing, etc.) to 
improve the network security. However new techniques must 
be developed to make intrusion detection work bet ter  for the 
wireless ad-hoc environment. 

Through our continuing investigation, we have shown that  
an architecture for bet ter  intrusion detection in wireless ad- 
hoc networks should be dis t r ibuted and cooperative. A sta- 
tistical anomaly detection approach should be used. The 
trace analysis and anomaly detection should be done lo- 
cally in each node and possibly through cooperation with all 
nodes in the network. Further,  intrusion detection should 
take place in all networking layers in an integrated cross- 
layer manner. 

Currently, we are continuing our investigation in the archi- 
tecture issues, the anomaly detection model, and the multi- 
layer integration approach. For architecture study, we are 
refining its design and plan to implement it and study its 
performance implications. For anomaly detection model, we 
are studying the effectiveness and scalabili ty of our approach 

for building anomaly detection models for ad-hoc routing 
protocols and for other layers of wireless networking. In 
particular,  we will first focus on two questions about  ad-hoc 
routing: what information a routing protocol should include 
to make intrusion detection effective, and what is the best 
anomaly detection model for a given routing protocol. Fi- 
nally, we will s tudy the effectiveness gain (i.e., in detection 
rate) with the multi-layer integration approach, as well as 
its performance penalties. 
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