
UDP Scan Using nmap

In this lab, you will use the nmap -sU option to perform a UDP scan.

With this scan type, nmap sends 0-byte UDP packets to each port on the target system. Receipt of an

ICMPv4 Destination Unreachable/Port Unreachable (Type 3, Code 3) message signifies the port is closed;

otherwise it is assumed open.

One major problem with this technique is that when a firewall blocks outgoing ICMPv4 Type 3, Code 3

messages, the port will appear open. These false-positives are hard to distinguish from real open ports.

Another disadvantage with UDP scanning is the speed at which it can be performed. Most OSes limit the

number of ICMPv4 Type 3, Code 3 messages which can be generated in a certain time period, thus

slowing the speed of a UDP scan. nmap adjusts its scan speed accordingly to avoid flooding a network

with useless packets.

NOTE: Microsoft OSes do not limit the ICMPv4 Type 3, Code 3 error generation frequency, thus, making

it is easier to scan a Windows machine's 65,535 UDP ports in very little time.

Exercise 1:

1. From a BackTrack shell, type the following (only type what's in bold):

user1@pentest:~# nmap -sU -v target_IP_address > /root/ceh/udpscan

Syntax breakdown:

nmap: program name

-sU: program option for UDP scan

-v: verbose mode

target_IP_address: the IP address of the target system

> /root/ceh/udpscan: redirect the output to a file called udpscan in the /root/ceh directory

2. Examine your results:

user1@pentest:~#cat /root/ceh/udpscan | less

3. Enable DNS server and SNMP service in your victim machine (Windows Server 2003) and

repeat step#1-2 and write down your results. (If you do not know how to enable DNS AND

SNMP services, research on it.)

4. Repeat steps #1-2 using different target IP addresses. Compare your results.

TCP Connect Scan Using nmap

Exercise 1: TCP Connect scan:

1.From a BackTrack shell, type the following (only type what's in bold):

user1@pentest:~#nmap -sT -vv target_IP_address > /root/ceh/connect_scan

Syntax breakdown:

nmap: program name

-sT: program option for TCP connect scan

-vv: program option for double verbose output

target_IP_address: the IP address of the target system

> /root/ceh/connect_scan: redirect the output to a file called connect_scan in the /root/ceh

directory

2. Examine your results:

user1@pentest:~#cat /root/ceh/connect_scan | less

3.Record your results:

PORT STATE SERVICE

-------- ---------- --------------

4.Enable IIS, FTP, Messenger, Telnet, POP3, and SMTP in your victim machine (Windows

Server 2003) and repeat step#1-2 and record your results. (if you do not know how to enable

IIS, FTP, Messenger, Telnet, POP3, and SMTP, research on it)

TCP SYN Scan Using nmap
Let's build on this common port scan so that your actions are stealthier.

In the next example, you will add two additional options: the -g and the –p options:

The -g option specifies the source port on the scanning machine (your system).

The most common option to use here is port 80 (because it's allowed through most

border network devices). The -p option sets the ports on the target system to scan.

Exercise 1: TCP SYN scan:

1. Using the -sS flag option, you will send the target system a SYN packet, but upon
receiving the SYN/ACK from the target system, your system will not respond with an
ACK packet (thus, completing the 3-way handshake). Instead, your system will
respond with a RST packet (the port is then considered open). If you receive an
RST/ACK packet from the target system, it indicates that there is not a running
process on that port, or the process running on the port is not listening for
connections.

2. The syntax to perform a TCP SYN scan is (only type what's in bold, on one line):

user1@pentest:~#nmap -sS -vv -g 80 -p 80,88,135,139,389,445

target_IP_address > /root/ceh/syn_scan

Syntax breakdown:

nmap: program name

-sS: program option for TCP SYN scan

-vv: program option for double verbose output

-g 80: program option that specifies the source port on the scanning machine

(your system)

-p 80,88,135,139,389,445: specifies the ports on the target system to scan

target_IP_address: the IP address of the target system

> /root/ceh/syn_scan: redirect the output to a file called syn_scan in the /root/ceh

directory

3. Examine your results:

 user1@pentest:~#cat /root/ceh/syn_scan | less

4. Record your results:

PORT STATE SERVICE

-------- ---------- --------------

5. Repeat steps #2-3 using a different target IP address and different destination port

numbers

TCP SYN Scans Using hping

Hping is a command-line-oriented packet-crafting program that allows you to control specific

options of the UDP, ICMP, TCP, or raw IP packet. hping can also be used for the following:

 Test firewall rules

 Advanced port scanning

 Test network performance using different protocols, packet size, TOS (type of
service) and fragmentation

 Path MTU discovery

 Transferring files

 Route tracing under different protocols

 Firewalk-like usage

 Remote OS fingerprinting, and

 TCP/IP stack auditing

In this lab, you will use hping to perform a few basic port scans.

Exercise 1: TCP SYN scan:

1.From a BackTrack shell, type the following (only type what's in bold):

user1@pentest:~# hping2 target_IP_address -S -p 135 > /root/ceh/hping_out

Syntax breakdown:

hping2: program name

target_IP_address: the IP address of the target system

-S: SYN flag set

-p 135: scan for TCP port 135

> /root/ceh/hping_out: redirect the output to a file called hping_out located in the

/root/ceh directory

2. After the scan runs for approximately 5 seconds, hit Ctrl+C to stop it

3. To view the results of this scan type the following:

 user1@pentest:~# cat /root/ceh/hping_out | less

NOTE: An open port is indicated by an SA (SYN/ACK) return packet. A closed port is

indicated by an RA (RST/ACK) packet.

Exercise 2: TCP SYN scan (range of addresses):

1. In this exercise, you will scan all well-known ports and redirect the output to a file called
hping_out1 in the /tmp directory. The resulting file will list the response (if any) from all
well-known ports. Notice the -V option in the following syntax (only type what’s in bold,
on one line):

user1@pentest:~# hping2 target_IP_address -S --scan 0-1023 -V >

/root/ceh/hping_out1

Syntax breakdown:

hping2: program name

target_IP_address: the IP address of the target system

-S: SYN flag set

--scan 0-1023: scan well-known ports

-V: see all the replies

> /root/ceh/hping_out1: redirect the output to a file called hping_out1 located in the

/root/ceh directory

2. To view the results of this scan type the following:

 user1@pentest:~# cat /root/ceh/hping_out1 | less

3. What ports are open on the target system?

Exercise 3: TCP SYN scan (range of addresses) viewing response from open ports:

1. In this exercise, you will scan all well-known ports again, and redirect the output to a file
called hping_out2 in the /tmp directory. In addition, you will eliminate the
-V option, which will show results only for open ports (only type what’s in bold, on one

line):

user1@pentest:~# hping2 target_IP_address -S --scan 0-1023 >

/root/ceh/hping_out2

Syntax breakdown:

hping2: program name

target_IP_address: target system's IP address

-S: SYN flag set

--scan 0-1023: scan well-known ports

> /root/ceh/hping_out2: redirect the output to a file called hping_out2 located in the

/root/ceh directory

2. To view the results, type the following:

 user1@pentest:~# cat /root/ceh/hping_out2 | less

3. What ports are open on the target system?

4. Compare this with the output in Exercise #2, #3. Are they the same? Should they be?
Why or why not.

Decoy Scan Using nmap
Exercise 1: in this exercise, you’ll use nmap to perform a decoy scan, which mixes

your IP address with bogus IP addresses (using the -D option):

1. From a BackTrack shell, type the following (only type what's in bold, on one line):

user1@pentest:~#nmap -n -D192.168.1.5,10.5.1.2,me,172.1.2.4

target_IP_address > /root/ceh/decoy_scan

Syntax breakdown:

nmap: program name

-n: program option to never resolve DNS names

-D192.168.1.5,10.5.1.2,me,172.1.2.4: program option to cloak your scan with the

supplied bogus and real IP addresses

target_IP_address: the IP address of the target system

> /root/ceh/decoy_scan: redirect the output to a file called decoy_scan in the /root/ceh

directory

2. Examine your results:

user1@pentest:~#cat /root/ceh/decoy_scan | less

