
Laboratory for Computer Security Education 1

Linux Firewall Lab

Copyright c© 2006 - 2011 Wenliang Du, Syracuse University.
The development of this document is funded by the National Science Foundation’s Course, Curriculum, and
Laboratory Improvement (CCLI) program under Award No. 0618680 and 0231122. Permission is granted
to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation. A copy of the license can be
found at http://www.gnu.org/licenses/fdl.html.

1 Overview

The learning objective of this lab is for students to gain the insights on how firewalls work by designing and
implementing a simple personal firewall for Linux. A personal firewall controls network traffic to and from
a computer, permitting or denying communications based on the security policies set by the administrators.

Firewalls have several types; in this lab, we focus on a very simple type, the packet filter. Packet filters
act by inspecting the packets; if a packet matches the packet filter’s set of rules, the packet filter will drop
the packet either silently or send an “error responses” to the source. Packet filters are usually stateless;
they filter each packet based only on the information contained in that packet, without paying attention to
whether a packet is part of an existing stream of traffic. Packet filters often use a combination of the packet’s
source and destination address, its protocol, and, for TCP and UDP traffic, the port number.

2 Lab Tasks

In this lab, students need to implement a packet filter for Linux. We will call it miniFirewall. This
firewall consists of two components: policy configuration and packet filtering.

2.1 Task 1: Firewall Policies

The policy configuration module is intended for allowing system administrators to set up the firewall poli-
cies. There are many types of policies that can be supported by personal firewalls, starting from very simple
to fairly complex. For miniFirewall, the minimal requirements on policies are described in the follow-
ing, but you are encouraged (and will be rewarded) if your firewall can support more sophisticated policies.
Basically, your firewall should be able to block or unblock incoming and outgoing packets based on the
following criteria:

1. Protocol: It specifies which protocol a policy applies to. The protocol can be TCP, UDP, or ICMP.

2. Source and Destination address: Match packets with source and destination addresses. As used by
many packet filters, address/netmask combination is often used to block an address range.

3. Source and Destination port number: Match packets with source and destination port numbers.

4. Action: Specify the actions when a packet matches with a rule. Common actions include

• BLOCK: block packets.

• UNBLOCK: used in conjunction with BLOCK to allow packets from just one address through
while the entire network is blocked.

Laboratory for Computer Security Education 2

Configuration Tools. You need to implement a tool to allow the administrator to configure the firewall
policies. Let us call this tool minifirewall. We give a few examples on how this tool can be used.
However, feel free to change the syntax according to your own preference.

• minifirewall --in --proto ALL --action BLOCK
Block all incoming packets.

• minifirewall --in --proto TCP --action UNBLOCK
Allow only TCP incoming packets.

• minifirewall --in --srcip 172.16.75.43 --proto ALL --action BLOCK
Block all the packets from the given IP address.

• minifirewall --out --destip 172.20.33.22 --proto UDP --action UNBLOCK
Unblock the outgoing UDP packets if the destination is 172.20.33.22

• minifirewall --in --srcip 172.16.0.0 --srcnetmask 255.255.0.0
--destport 80 --proto TCP --action BLOCK
Block all incoming TCP packets from the 172.16.0.0/16 network if the packets are directed
towards port 80.

• minifirewall --print
Print all rules.

• minifirewall --delete 3
Delete the 3rd rule.

2.2 Task 2: Packet Filtering

The main part of firewall is the filtering part, which enforces the firewall policies set by the administrator.
Since the packet processing is done within the kernel, the filtering must also be done within the kernel.
This requires us to modify the Linux kernel. In the past, this has to be done by modifying the kernel
code, and rebuild the entire kernel image. The modern Linux operating system provides several new
mechanisms to facilitate the manipulation of packets without requiring the kernel image to be rebuilt. These
two mechanisms are Loadable Kernel Module (LKM) and Netfilter.

LKM allows us to add a new module to the kernel on the runtime. This new module enables us to extend
the functionalities of the kernel, without rebuilding the kernel or even rebooting the computer. The packet
filtering part of our miniFirewall can be implemented as an LKM. However, this is not enough. In order
for our module to block incoming/outgoing packets, our module must be inserted into the packet processing
path. This cannot be easily done in the past before the Netfilter is introduced into the Linux.

Netfilter is designed to facilitate the manipulation of packets by authorized users. Netfilter
achieves this goal by implementing a number of hooks in the Linux kernel. These hooks are inserted into
various places, including the packet incoming and outgoing paths. If we want to manipulate the incoming
packets, we simply need to connect our own programs (within LKM) to the corresponding hooks. Once an
incoming packet arrives, our program will be invoked. Our program can decide whether this packet should
be blocked or not; moreover, we can also modify the packets in the program.

In this task, you need to use LKM and Netfilter to implement the packet filtering module. This
module will fetch the firewall policies from a data structure, and use the policies to decide whether packets
should be blocked or not. You should be able to support a dynamic configuration, i.e., the administrator
can dynamically change the firewall policies, your packet filtering module must automatically enforce the
updated policies.

Laboratory for Computer Security Education 3

Storage of policies. Since your configuration tool runs in the user space, the tool has to send the data to
the kernel space, where your packet filtering module, which is a LKM, can get the data. The policies must
be stored in the kernel memory. You cannot ask your LKM to get the policies from a file, because that will
significantly slow down your firewall.

3 Guidelines

3.1 Loadable Kernel Module

The following is a simple loadable kernel module. It prints out "Hello World!" when the module is
loaded; when the module is removed from the kernel, it prints out "Bye-bye World!". The messages
are not printed out on the screen; they are actually printed into the /var/log/syslog file. You can use
dmesg | tail -10 to read the last 10 lines of message.

#include <linux/module.h>
#include <linux/kernel.h>

int init_module(void)
{

printk(KERN_INFO "Hello World!\n");
return 0;

}

void cleanup_module(void)
{

printk(KERN_INFO "Bye-bye World!.\n");
}

We now need to create Makefile, which includes the following contents (the above program is named
hello.c). Then just type make, and the above program will be compiled into a loadable kernel module.

obj-m += hello.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Once the module is built by typing make, you can use the following commands to load the module, list all
modules, and remove the module:

% sudo insmod mymod.ko (inserting a module)
% lsmod (list all modules)
% sudo rmmod mymod.ko (remove the module)

Also, you can use modinfo mymod.ko to show information about a Linux Kernel module.

Laboratory for Computer Security Education 4

3.2 Interacting with Loadable Kernel Module

In our miniFirewall, the packet filtering part is implemented in the kernel, but the policy setting is done
at the user space. We need a mechanism to pass the policy information from a user-space program to the ker-
nel module. There are several ways to do this; a standard approach is to use /proc. Please read the article
from http://www.ibm.com/developerworks/linux/library/l-proc.html for detailed
instructions. Once we set up a /proc file for our kernel module, we can use the standard write() and
read() system calls to pass data to and from the kernel module.

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/proc_fs.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fortune Cookie Kernel Module");
MODULE_AUTHOR("M. Tim Jones");

#define MAX_COOKIE_LENGTH PAGE_SIZE

static struct proc_dir_entry *proc_entry;
static char *cookie_pot; // Space for fortune strings
static int cookie_index; // Index to write next fortune
static int next_fortune; // Index to read next fortune

ssize_t fortune_write(struct file *filp, const char __user *buff,
unsigned long len, void *data);

int fortune_read(char *page, char **start, off_t off,
int count, int *eof, void *data);

int init_fortune_module(void)
{
int ret = 0;

cookie_pot = (char *)vmalloc(MAX_COOKIE_LENGTH);

if (!cookie_pot) {
ret = -ENOMEM;

} else {
memset(cookie_pot, 0, MAX_COOKIE_LENGTH);
proc_entry = create_proc_entry("fortune", 0644, NULL);
if (proc_entry == NULL) {

ret = -ENOMEM;
vfree(cookie_pot);
printk(KERN_INFO "fortune: Couldn’t create proc entry\n");

Laboratory for Computer Security Education 5

} else {
cookie_index = 0;
next_fortune = 0;
proc_entry->read_proc = fortune_read;
proc_entry->write_proc = fortune_write;

printk(KERN_INFO "fortune: Module loaded.\n");
}

}

return ret;
}

void cleanup_fortune_module(void)
{
remove_proc_entry("fortune", NULL);
vfree(cookie_pot);
printk(KERN_INFO "fortune: Module unloaded.\n");

}

module_init(init_fortune_module);
module_exit(cleanup_fortune_module);

The function to read a fortune is shown as following:

int fortune_read(char *page, char **start, off_t off,
int count, int *eof, void *data)

{
int len;

if (off > 0) {

*eof = 1;
return 0;

}

/* Wrap-around */
if (next_fortune >= cookie_index) next_fortune = 0;
len = sprintf(page, "%s\n", &cookie_pot[next_fortune]);
next_fortune += len;

return len;
}

The function to write a fortune is shown as following. Note that we use copy from user to copy the
user buffer directly into the cookie pot.

ssize_t fortune_write(struct file *filp, const char __user *buff,
unsigned long len, void *data)

Laboratory for Computer Security Education 6

{
int space_available = (MAX_COOKIE_LENGTH-cookie_index)+1;

if (len > space_available) {
printk(KERN_INFO "fortune: cookie pot is full!\n");
return -ENOSPC;

}

if (copy_from_user(&cookie_pot[cookie_index], buff, len)) {
return -EFAULT;

}

cookie_index += len;
cookie_pot[cookie_index-1] = 0;
return len;

}

3.3 A Simple Program that Uses Netfilter

Using Netfilter is quite straightforward. All we need to do is to hook our functions (in the kernel
module) to the corresponding Netfilter hooks. Here we show an example from an online tutorial,
which is available at the following URL:

http://www.topsight.net/article.php/2003050621055083/print

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>

/* This is the structure we shall use to register our function */
static struct nf_hook_ops nfho;

/* This is the hook function itself */
unsigned int hook_func(unsigned int hooknum,

struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))

{
return NF_DROP; /* Drop ALL packets */

}

/* Initialization routine */
int init_module()
{ /* Fill in our hook structure */

nfho.hook = hook_func; /* Handler function */

Laboratory for Computer Security Education 7

nfho.hooknum = NF_INET_PRE_ROUTING; /* First hook for IPv4 */
nfho.pf = PF_INET;
nfho.priority = NF_IP_PRI_FIRST; /* Make our function first */

nf_register_hook(&nfho);
return 0;

}

/* Cleanup routine */
void cleanup_module()
{

nf_unregister_hook(&nfho);
}

When compiling some of the examples from the tutorial, you might see an error that says that
NF IP PRE ROUTING is undefined. Most likely, this example is written for the older Linux kernel. Since
version 2.6.25, kernels have been using NF INET PRE ROUTING. Therefore, replace NF IP PRE ROUTING
with NF INET PRE ROUTING, this error will go away (the replacement is already done in the code above).

3.4 The iptables and ufw programs

Linux has a tool called iptables, which is essentially a firewall built upon the Netfilter mecha-
nism. In addition, Linux has another tool called ufw, which a front end to iptables (it is easier to use
than iptables). You can consider miniFirewall as a mini-version of iptables or ufw. You are
encourage to play with these programs to gain some inspiration for your own design. However, copying the
code from them is strictly forbidden. Moreover, you may find some tutorials that also provide sample code
for simple firewalls. You can learn from those tutorials and play with the sample code, but you have to write
your own code. In your lab reports, you need to submit your code, and explain the key parts of your code.

3.5 Parsing Command Line Arguments

Because our miniFirewall program needs to recognize command line arguments, we need to parse these
arguments. If the syntax for the command line arguments is simple enough, we can directly write code to
parse them. However, our miniFirewall has to recognized options with a a fairly sophisticated syntax.
We can use getopt() and getopt long() to systematically parse command line arguments. Please
read the tutorial in the following URL:

http://www.gnu.org/s/libc/manual/html_node/Getopt.html

4 Submission and Demonstration

You should submit a detailed lab report to describe your design and implementation. You should also
describe how you test the functionalities and security of your system. Please list the important code snippets
followed by explanation. Simply attaching code without any explanation will not receive credits.

