Cryptography

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key secret
 (private)

Symmetric key cryptography

substitution cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Q: How hard to break this simple cipher?:
D brute force (how hard?)
D other?

Symmetric key cryptography

symmetric key crypto: Bob and Alice share know same (symmetric) key: K

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- <u>Q:</u> how do Bob and Alice agree on key value?

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- How secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase ("Strong cryptography makes the world a safer place") decrypted (brute force) in 4 months
 - no known "backdoor" decryption approach
- making DES more secure:
 - use three keys sequentially (3-DES) on each datum
 - use cipher-block chaining

Symmetric key crypto: DES

-DES operation

initial permutation

16 identical "rounds" of function application, each using different 48 bits of key

final permutation

8: Network Security

AES: Advanced Encryption Standard

- new (Nov. 2001) symmetric-key NIST standard, replacing DES
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

- multiple passes: each input bit afects all output bits
- □ block ciphers: DES, 3DES, AES

Cipher Block Chaining

- cipher block: if input block repeated, will produce same cipher text:
- cipher block chaining: XOR ith input block, m(i), with previous block of cipher text, c(i-1)
 - c(0) transmitted to receiver in clear
 - what happens in "HTTP/1.1" scenario from above?

Public key cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key cryptography

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

Requirements:

1 need
$$K_{B}^{\dagger}(\cdot)$$
 and $K_{B}^{-}(\cdot)$ such that
 $K_{B}^{-}(K_{B}^{\dagger}(m)) = m$

given public key K⁺_B, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adleman algorithm

RSA: Choosing keys

- 1. Choose two large prime numbers *p, q.* (e.g., 1024 bits each)
- 2. Compute n = pq, z = phi(n)=(p-1)(q-1)
- 3. Choose *e* (with *b<n*) that has no common factors with z. (*e*, *z* are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

$$K_{B}^{+}$$

RSA: Encryption, decryption

0. Given (*n,b*) and (*n,a*) as computed above

- 1. To encrypt bit pattern, m, compute $x = m \mod n$ (i.e., remainder when m is divided by n)
- 2. To decrypt received bit pattern, c, compute $m = x \mod n$ (i.e., remainder when c is divided by n)

RSA example:

Bob chooses *p=5, q=7*. Then *n=35, z=24*.

e=5 (so *e, z* relatively prime). *d=29* (so *ed-1* exactly divisible by z.

RSA: Why is that $m = (m \mod n)$ $d \mod n$

Useful number theory result: If p,q prime and n = pq, then: $y \qquad y \mod (p-1)(q-1)$ $x \mod n = x \qquad \mod n$ $(m \mod n)$ $d \mod n = m \mod n$ $= m \mod (p-1)(q-1)$ $= m \mod n$ (using number theory result above) $= m \mod n$ (since we chose ed to be divisible by (p-1)(q-1) with remainder 1)

= m

RSA: another important property

The following property will be very useful later:

$$K_{B}^{-}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}^{-}(m))$$

use public key first, followed by private key use private key first, followed by public key

Result is the same!

Message Integrity

Bob receives msg from Alice, wants to ensure:

- message originally came from Alice
- message not changed since sent by Alice

Cryptographic Hash:

- takes input m, produces fixed length value, H(m)
 - e.g., as in Internet checksum
- computationally infeasible to find two different messages, x, y such that H(x) = H(y)
 - equivalently: given m = H(x), (x unknown), can not determine x.
 - note: Internet checksum *fails* this requirement!

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- ✓ produces fixed length digest (16-bit sum) of message
- ✓ is many-to-one
- But given message with given hash value, it is easy to find another message with same hash value:

message	<u>ASCII format</u>	message	<u>ASCII format</u>
I O U 1	49 4F 55 31	ΙΟ U <u>9</u>	49 4F 55 <mark>39</mark>
00.9	30 30 2E 39	00. <u>1</u>	30 30 2E <u>31</u>
9 B O B	39 42 4F 42	9 B O B	39 42 4F 42
	B2 C1 D2 AC different m but identice	nessages – al checksums!	-B2 C1 D2 AC

Message Authentication Code

MACs in practice

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit MAC in 4-step process.
 - arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x
 - recent (2005) attacks on MD5
- SHA-1 is also used
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit MAC

Digital Signatures

cryptographic technique analogous to hand-written signatures.

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital Signatures

simple digital signature for message m:

 Bob "signs" m by encrypting with his private key K_B, creating "signed" message, K_B(m)

Digital Signatures (more)

- suppose Alice receives msg m, digital signature $K_{B}(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B^+ to $\overline{K_B}(m)$ then checks $\overline{K_B}(K_B(m)) = m$.
- if $K_{B}(K_{B}(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- ✓ Bob signed m.
- \checkmark No one else signed m.
- ✓ Bob signed m and not m'.

non-repudiation:

 ✓ Alice can take m, and signature K_B(m) to court and prove that Bob signed m.

Digital signature = signed MAC

Bob sends digitally signed

Alice verifies signature and integrity

Public Key Certification

public key problem:

When Alice obtains Bob's public key (from web site, e-mail, diskette), how does she know it is Bob's public key, not Trudy's?

solution:

• trusted certification authority (CA)

Certification Authorities

- Certification Authority (CA): binds public key to particular entity, E.
- E registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA: CA says
 "This is E's public key."

Certification Authorities

- when Alice wants Bob's public key:
 - gets Bob's certificate (Bob or elsewhere).
 - apply CA's public key to Bob's certificate, get
 Bob's public key

A certificate contains:

- Serial number (unique to issuer)
- info about certificate owner, including algorithm and key value itself (not shown)

- info about certificate issuer
- valid dates
 - digital signature by issuer

Authentication

<u>Goal</u>: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

Failure scenario??

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

<u>Protocol ap2.0:</u> Alice says "I am Alice" in an IP packet containing her source IP address

<u>Protocol ap2.0:</u> Alice says "I am Alice" in an IP packet containing her source IP address

<u>Protocol ap3.0:</u> Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

<u>Protocol ap3.1:</u> Alice says "I am Alice" and sends her *encrypted* secret password to "prove" it.

<u>Protocol ap3.1:</u> Alice says "I am Alice" and sends her *encrypted* secret password to "prove" it.

<u>Goal:</u> avoid playback attack

Nonce: number (R) used only once -in-a-lifetime

<u>ap4.0:</u> to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key

• can we authenticate using public key techniques?

<u>ap5.0</u>: use nonce, public key cryptography

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Difficult to detect:

Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation)

problem is that Trudy receives all messages as well!

Secure e-mail

Alice wants to send confidential e-mail, m, to Bob.

Alice:

- \Box generates random *symmetric* private key, K_S.
- \Box encrypts message with K_S (for efficiency)
- \Box also encrypts K_s with Bob's public key.
- sends both $K_s(m)$ and $K_B(K_s)$ to Bob.

Secure e-mail

□ Alice wants to send confidential e-mail, m, to Bob.

Bob:

- uses his private key to decrypt and recover K_s
- \Box uses K_s to decrypt K_s(m) to recover m

Secure e-mail (continued)

• Alice wants to provide sender authentication message integrity.

- Alice digitally signs message.
- sends both message (in the clear) and digital signature.

Secure e-mail (continued)

• Alice wants to provide secrecy, sender authentication, message integrity.

Alice uses three keys: her private key, Bob's public key, newly created symmetric key

Pretty good privacy (PGP)

- Internet e-mail encryption scheme, de-facto standard.
- uses symmetric key cryptography, public key cryptography, hash function, and digital signature as described.
- provides secrecy, sender authentication, integrity.
- inventor, Phil Zimmerman, was target of 3-year federal investigation.

A PGP signed message:

```
---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1
```

```
Bob:My husband is out of town
tonight.Passionately yours,
Alice
```

```
---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJ
hFEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---
```