
Operating Systems Security

1

The Boot Sequence
• The action of loading an operating

system into memory from a
powered-off state is known as
booting or bootstrapping.

• When a computer is turned on, it
first executes code stored in a
firmware component known as the
BIOS (basic input/output system).

• On modern systems, the BIOS loads
into memory the second-stage boot
loader, which handles loading the
rest of the operating system into
memory and then passes control of
execution to the operating system.

2

BIOS Passwords
• A malicious user could potentially seize

execution of a computer at several points in
the boot process.

• To prevent an attacker from initiating the first
stages of booting, many computers feature a
BIOS password that does not allow a second-
stage boot loader to be executed without
proper authentication.

3

Hibernation
• Modern machines have the ability to go into a powered-off state

known as hibernation.
• While going into hibernation, the OS stores the contents of

machine’s memory into a hibernation file (such as hiberfil.sys)
on disk so the computer can be quickly restored later.

• But… without additional security precautions, hibernation
exposes a machine to potentially invasive forensic investigation.

4

1. User closes a laptop computer,
putting it into hibernation.

2. Attacker copies the hiberfil.sys
file to discover any unencrypted
passwords that were stored
in memory when the computer
was put into hibernation.

Event Logging

• Keeping track of what processes are running,
what other machines have interacted with the
system via the Internet, and if the operating
system has experienced any unexpected or
suspicious behavior can often leave important
clues not only for troubleshooting ordinary
problems, but also for determining the cause of
a security breach.

5

Process Explorer

6

Memory and Filesystem Security

7

• The contents of a computer are encapsulated
in its memory and filesystem.

• Thus, protection of a computer’s content has
to start with the protection of its memory and
its filesystem.

Password Security

• The basic approach to guessing passwords from
the password file is to conduct a dictionary
attack, where each word in a dictionary is
hashed and the resulting value is compared with
the hashed passwords stored in the password
file.

• A dictionary of 500,000 “words” is often enough
to discover most passwords.

8

Password Salt
• One way to make the dictionary attack more

difficult to launch is to use salt.
• Associate a random number with each userid.
• Rather than comparing the hash of an entered

password with a stored hash of a password,
the system compares the hash of an entered
password and the salt for the associated
userid with a stored hash of the password and
salt.

9

How Password Salt Works

10

Without salt:

With salt:

1. User types userid, X, and password, P.

2. System looks up H, the stored hash of X’s
password.

3. System tests whether h(P) = H.

1. User types userid, X, and password, P.

2. System looks up S and H, where S is the
random salt for userid X and H is stored hash
of S and X’s password.

3. System tests whether h(S||P) = H.

…
X: H
…

Password file:

…
X: S, H
…

Password file:

How Salt Increases Search Space Size
• Assuming that an attacker cannot find the salt associated with

a userid he is trying to compromise, then the search space for
a dictionary attack on a salted password is of size

2B*D,
where B is the number of bits of the random salt and D is the
size of the list of words for the dictionary attack.

• For example, if a system uses a 32-bit salt for each userid and
its users pick passwords in a 500,000 word dictionary, then
the search space for attacking salted passwords would be

232 * 500,000 = 2,147,483,648,000,000,
which is over 2 quadrillion.

• Also, even if an attacker can find a salt password for a userid,
he only learns one password.

11

Filesystem Security

12

General Principles
• Files and folders are managed

by the operating system
• Applications, including shells,

access files through an API
• Access control entry (ACE)

– Allow/deny a certain type of
access to a file/folder by
user/group

• Access control list (ACL)
– Collection of ACEs for a

file/folder

• A file handle provides an
opaque identifier for a
file/folder

• File operations
– Open file: returns file handle
– Read/write/execute file
– Close file: invalidates file

handle
• Hierarchical file organization

– Tree (Windows)
– DAG (Linux)

13

Discretionary Access Control (DAC)

• Users can protect what they own
– The owner may grant access to others
– The owner may define the type of access

(read/write/execute) given to others
• DAC is the standard model used in operating

systems
• Mandatory Access Control (MAC)

– Alternative model not covered in this lecture
– Multiple levels of security for users and documents
– Read down and write up principles

14

Closed vs. Open Policy

Closed policy
– Also called “default secure”

• Give Tom read access to “foo”

• Give Bob r/w access to “bar

• Tom: I would like to read “foo”

– Access allowed

• Tom: I would like to read “bar”

– Access denied

Open Policy
• Deny Tom read access to “foo”

• Deny Bob r/w access to “bar”

• Tom: I would like to read “foo”

– Access denied

• Tom: I would like to read “bar”

– Access allowed

15

Closed Policy with Negative
Authorizations and Deny Priority

• Give Tom r/w access to “bar”
• Deny Tom write access to “bar”
• Tom: I would like to read “bar”
– Access allowed

• Tom: I would like to write “bar”
– Access denied

• Policy is used by Windows to manage access control
to the file system

16

Access Control Entries and Lists
• An Access Control List (ACL) for a resource (e.g., a file or

folder) is a sorted list of zero or more Access Control
Entries (ACEs)

• An ACE specifies that a certain set of accesses (e.g., read,
execute and write) to the resources is allowed or denied
for a user or group

• Examples of ACEs for folder “Bob’s CS167 Grades”
– Bob; Read; Allow
– TAs; Read; Allow
– TWD; Read, Write; Allow
– Bob; Write; Deny
– TAs; Write; Allow

17

Linux vs. Windows
• Linux

– Allow-only ACEs
– Access to file depends on

ACL of file and of all its
ancestor folders

– Start at root of file system
– Traverse path of folders
– Each folder must have

execute (cd) permission
– Different paths to same file

not equivalent
– File’s ACL must allow

requested access

• Windows
– Allow and deny ACEs
– By default, deny ACEs

precede allow ones
– Access to file depends only

on file’s ACL
– ACLs of ancestors ignored

when access is requested
– Permissions set on a folder

usually propagated to
descendants (inheritance)

– System keeps track of
inherited ACE’s

18

Linux File Access Control

• File Access Control for:
– Files
– Directories
– Therefore…

• \dev\ : devices
• \mnt\ : mounted file systems
• What else? Sockets, pipes, symbolic links…

19

Linux File System
• Tree of directories (folders)
• Each directory has links to zero or more files or directories
• Hard link

– From a directory to a file
– The same file can have hard links from multiple directories, each with its own

filename, but all sharing owner, group, and permissions

– File deleted when no more hard links to it

• Symbolic link (symlink)
– From a directory to a target file or directory

– Stores path to target, which is traversed for each access
– The same file or directory can have multiple symlinks to it

– Removal of symlink does not affect target

– Removal of target invalidates (but not removes) symlinks to it
– Analogue of Windows shortcut or Mac OS alias

20

Unix Permissions
• Standard for all UNIXes
• Every file is owned by a user and has an associated group
• Permissions often displayed in compact 10-character notation
• To see permissions, use ls –l
• For the first character a - (hyphen) indicates a plain file, d a directory

and l a soft link.
• The remaining 9 characters are split into 3 components of 3

characters each, to describe the user's, group's and others'
privileges respectively.

• Within each 3 character triplet, the first indicates read permission,
the second is for write permission and the third is for execute
permission.

• If the r, w or x character is present, the permission is allowed, if the
position is occupied by a - (hyphen) the permission is denied

21

Directory Rights

• On a directory, the x permission means
something different from the ability to execute a
file.

• Directories can't be executed. Here the x
permission means the ability to search through,
or traverse a directory to access subdirectories,
whether or not you are allowed to read the
directory being traversed. Being allowed to write
to a directory enables files to be renamed, or
deleted within it.

22

Unix Permissions

• Standard for all UNIXes
• Every file is owned by a user and has an associated

group
• Permissions often displayed in compact 10-character

notation
• To see permissions, use ls –l

jk@sphere:~/test$ ls –l
total 0
-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1
-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2

23

File Permission Examples

24

Working Graphically with Permissions

• Several Linux GUIs exist for
displaying and changing
permissions

• In KDE’s file manager
Konqueror, right-click on a file
and choose Properties, and
click on the Permissions tab:

• Changes can be made here
(more about changes later)

25

Sharing data on a multiuser system

• Giving write access on your own directory isn't a safe
way to share data. This gives the ability to do
anything (accidently or deliberately) to any of the
contents of the directory.

• If you want to share your files, allocate read and
execute permission to the directory and read
permission to your files. Others can then read them
or copy them into their own directories.

• A multi-user open system in an academic
environment is not very secure, but some protection
can be given by putting files into a directory to which
only you have access.

The chmod command

File permissions are assigned using the chmod command. This
can be used in one of two ways. Some users prefer to give the
octal 3 digit mode, others prefer to use the character equivalents.
Examples using octal modes:

chmod 421 f1 assigns permissions r---w---x to f1
chmod 750 f1 f2 assigns permissions rwxr-x--- to f1 and f2

Each octal digit adds 4 for read, 2 for write and 1 for execute
permission. The first digit is for user, second for group and the
third for others.

The chmod command (continued)
Examples using mnemonic modes

Octal Notation Examples

29

read/write/execute to everyone
(dangerous!)

777 or 0777

same as 777, plus sticky bit1777

same as 775, plus setgid (useful for
directories)

2775

read/write for owner, read-only for group,
forbidden to others

640 or 0640

read/write/execute for owner and group,
read/execute for others

775 or 0775

read/write for owner, read-only for
everyone else

644 or 0644

Special Permission Bits

• Three other permission bits exist
– Set-user-ID (“setuid”) bit
– Set-effective-user-ID (seteuid) bit
– Set-group-ID (“setgid”) bit
– Sticky bit

30

Set-user-ID

• Set-user-ID (“suid” or “setuid”) bit
– On executable files, causes the program to run as

file owner regardless of who runs it
– Ignored for everything else
– In 10-character display, replaces the 4th character

(x or -) with s (or S if not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid
-rwSr--r--: setuid, but not executable - not useful

31

Setuid example

rich@saturn:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 27132 2006-07-11 13:51
/usr/bin/passwd

When a user changes their own password using
the passwd command, this program is run by the
user, but runs with the UID of its owner (root).

Set-group-ID
• Set-group-ID (“sgid” or “setgid”) bit

– On executable files, causes the program to run with the file’s group,
regardless of whether the user who runs it is in that group

– On directories, causes files created within the directory to have the
same group as the directory, useful for directories shared by multiple
users with different default groups

– Ignored for everything else
– In 10-character display, replaces 7th character (x or -) with s (or S if not

also executable)
-rwxr-sr-x: setgid file, executable by all
drwxrwsr-x: setgid directory; files within will have group of directory
-rw-r-Sr--: setgid file, but not executable - not useful

33

Setgid example
rich@saturn:~$ ls -l /usr/bin/procmail
-rwsr-sr-x 1 root mail 68152 2005-05-03 03:10 /usr/bin/procmail
rich@saturn:~$ ls -l /var/mail
total 15652
-rw-rw---- 1 rich mail 15984976 2006-10-18 20:03 rich
-rw-rw---- 1 test mail 1810 2006-10-15 08:20 test
-rw-rw---- 1 rich mail 4333 2006-09-26 07:00 trap

When user1 uses procmail to send an email to user2, procmail needs to
be able to write to the mail spool (/var/mail/user2) of the other user,
which has group ownership of mail and group write access. The write
access by user1 to user2's mailbox is restricted to what the procmail
program is programmed to do, i.e. deliver a message.

Sticky Bit
• On directories, prevents users from deleting or renaming files

they do not own
• Ignored for everything else
• The sticky bit is used on directories such as /tmp where all

users have write access, but not to each others' files.
• In 10-character display, replaces 10th character (x or -) with t

(or T if not also executable)

drwxrwxrwt: sticky bit set, full access for everyone
drwxrwx--T: sticky bit set, full access by user/group
drwxr--r-T: sticky, full owner access, others can read (useless)

35

Working Graphically with Special Bits
• Special permission bits can also be displayed and changed

through a GUI
• In Konqueror’s Permissions window, click Advanced

Permissions:
• Changes can be made here (more about changes later)

36

Root

• “root” account is a super-user account, like
Administrator on Windows

• Multiple roots possible
• File permissions do not restrict root
• This is dangerous, but necessary, and OK with

good practices

37

Becoming Root
• su

– Changes home directory, PATH, and shell to that of root, but doesn’t
touch most of environment and doesn’t run login scripts

• su -
– Logs in as root just as if root had done so normally

• sudo <command>
– Run just one command as root

• su [-] <user>
– Become another non-root user
– Root does not require to enter password

38

Limitations of Unix Permissions

• Unix permissions are not perfect
– Groups are restrictive
– Limitations on file creation

• Linux optionally uses POSIX ACLs
– Builds on top of traditional Unix permissions
– Several users and groups can be named in ACLs, each with

different permissions
– Allows for finer-grained access control

• Each ACL is of the form type:[name]:rwx
– Setuid, setgid, and sticky bits are outside the ACL system

39

Daemons and Services
• Computers run dozens of processes that run without

any user intervention.
• In linux, these background processes are know as
daemons.

• They are indistinguishable from any other process, are
started by init process and operate at varying levels of
permissions.

• They are forked before the user is authenticated, and
able to run with higher permissions than any user, and
survive the end of the login sessions.

• Examples are processes that control web servers,
remote logins, and print servers.

40

Daemons and Services

• Windows have an equivalent class of
processes known as services.

• They are easily distinguishable from other
processes,

• are differentiated in monitoring software such
as Task Manager.

41

Stack-based BoF

• The stack is the component of the memory
address space of a process that contains data
associated with the function calls.

• The stack consists of frames.
• A frame stores the local variables and arguments

of the call and the return address of the parent
call.

• This structure allows for the CPU to know where
to return to when a method terminates.

42

Stack-based BoF (cond)

• In a BoF attack, an attacker provides the input
to the program that is larger than a buffer can
hold.

• This commonly occurs with the use of
unchecked C library functions such as strcpy()
and gets(), which copy user input without
checking its length.

43

How to seize control of execution

• How to guess the location of the return
address with respect to buffer?

• OS design makes this job challenging
– Processes cannot access the address spaces of

other processes, so the malicious code must
reside within the address space of the exploited
process

– The address space of a given process is
unpredictable and may change when a program is
run on different machines.

44

How to seize control of execution-
Vulnerabilities and Attack Method

• Vulnerability scenarios
– The program has root privileges (setuid) and is

launched from a shell
– The program is part of a web application

• Typical attack method
1. Find vulnerability
2. Reverse engineer the program
3. Build the exploit

4/6/21 Buffer Overflow 45

Techniques to overcome above
challenges

• NOP Sledding: is a CPU instruction that does not
actually do anything except tell the processor to
proceed to the next instruction.

• Jump-to-register or trampolining: a particular
code such as Windows DLL tells the processor to
jump to the address stored in on the processor’s
registers, such as ESP. If the malicious code is
placed at the address pointed by ESP and
overwrite the return address, the application will
jump and execute the malicious code.

46

The Return-to-libc Attack

• If an attacker can determine the address of a C
library function within a vulnerable process’s
address space, such as system() or execv.

• The attacker can force the program to call this
function.

• Same technique, but replace the return
address with the address of the desired library
function.

47

Shellcode

• A malicious coded included in an exploit to spawn a
terminal or shell, allowing them to issue further
commands.

• It is executed directly on the stack by the CPU, it must
be written in assembly language, low-level processor
instructions, which vary by CPU architecture.

• BoF is commonlly used as a means of privilege
escalation. For example, if a SETUID program (stack.c)
is vulnerable to BoF attacks, the attacker can gain a
shell with the permission of the process’s owner.

48

Preventing Stack-based BoF Attacks

• The root cause does not come from OS but
insecure programming practices.

• Programmers must be educated about the
risks of insecurely coping user-supplied data
into fixed size buffers.

• Use strncpy(buf, argv[1], sizeof(buf)) instead
of strcpy(buf, argv[1])

49

Preventing Stack-based BoF Attacks --
strcpy() vs. strncpy()

• Function strcpy() copies the string in the second
argument into the first argument
– e.g., strcpy(dest, src)
– If source string > destination string, the overflow characters

may occupy the memory space used by other variables
• Function strncpy() copies the string by specifying the

number n of characters to copy
– e.g., strncpy(buf, argv[1], sizeof(buf))
– If source string is longer than the destination string, the

overflow characters are discarded automatically

4/6/21

Preventing Stack-based BoF Attacks -- using a
random canary

• The canary is placed in the stack prior to the return address, so that
any attempt to over-write the return address also over-writes the
canary.

• The system regularly checks the integrity of this canary value. If it
has been changed, it knows that the buffer has been overflowed
and it should prevent malicious code execution.

4/6/21 Buffer Overflow 51

Buffer Other local
variables

Canary
(random)

Return
address Other data

Buffer
Corrupt
return

address
Attack code

Normal (safe) stack configuration:

Buffer overflow attack attempt:

Overflow data x

• PointGuard by Microsoft. It is a compiler
extension, that address code which XOR-encodes
any pointers, including the return address before
and after they are used. Therefore, attacker
cannot reliably overwrite the return address.

• Enforce no-execution permission on the stack
segment of memory

• Address space layout randomization (ASLR)
rearranges the data of a process’s address space
at random.

52

Preventing Stack-based BoF Attacks (cond)

Race Condition

• A race condition is any situation where the
behavior of the program is unintentionally
dependent on the timing of certain event.

• We have a simple program that takes a
filename as an argument.

• Checks whether the user running the program
has permission to open that file, and if so,
reads the first few characters of the file and
prints them.

53

Int main(int argc, char * argv[]) {
int file;
char buf[1024];
memset(buf, 0, 1024);
if(access(argv[1], R_OK) != 0){
//CHECK: zero means permitted, non-zero means denied

printf(“cannot access file. \n”);
exit(-1);

}
file = open(argv[1], O_RDONLY);
//READ
read(file, buf, 1023);
close(file);
printf(%s\n”, buf);
return 0;

}

54

We assume this program is a SETUID program.

What an attacker can do?

• Exploit the delay b/w the calls to access() and
open()

• Attacker can provide an innocent file
“/home/joe/dummy” as an argument, which he
has access to it.

• After the access() returns 0, he quickly replace
/home/joe/dummy with a symbolic link to a file
that he does not have permission to read such as
/etc/password.

• Because the program is SETUID, it can open any
files accessible to the root user.

55

Time of Check/Time of Use (TOCTOU)
Problem

• Any time a program checks the validity and
authorization for an object, whether it be a file or
some other property, before performing an
action on that object, care should be taken.

• Two operations need to be performed atomically,
which means they need to be performed as a
single uninterruptible operation.

• Otherwise objects may be changed in between.

56

Int main(int argc, char * argv[]){
int file;
char buf[1024];
uid_t uid, euid;
memset(buf, 0, 1024);
if(argc < 2) {

printf(“Usage: printer [filename]\n”);
exit(-1);

}
euid = geteuid();
uid = getuid();
/* Drop privileges */
seteuid(uid);
file = open(argv[1], O_RDONLY);
read(file, buf, 1023);
close(file);
/* restore privileges */
seteuid(euid);
printf(“%s\n”, buf);
return 0;

}

57

Drop privileges
using seteuid
before calling
open(). open()
uses euid
instead of uid.

