
Buffer overflows

Serious Note

• Try a web search for “buffer overflow
exploit”.

• Check alt.2600, rootshell.com,
antionline.com – you can find long lists of
exploits based on buffer overflow.

• Even the original version of ssh had a
problem! (after they made a big deal that
there were no buffer overflow problems in
their code).

The Problem

void foo(char *s) {
char buf[10];
strcpy(buf,s);
printf(“buf is %s\n”,s);

}
…
foo(“thisstringistolongforfoo”);

Exploitation

• The general idea is to give programs
(servers) very large strings that will
overflow a buffer.

• For a server with sloppy code – it’s easy to
crash the server by overflowing a buffer.

• It’s sometimes possible to actually make
the server do whatever you want (instead
of crashing).

Background Necessary

• C functions and the stack.
• A little knowledge of assembly/machine

language.
• How system calls are made (at the level of

machine code level).
• exec() system calls
• How to “guess” some key parameters.

CPU/OS dependency

• Building an exploit requires knowledge of the
specific CPU and operating system of the
target.

• We’ll just talk about x86 and Linux, but the
methods work for other CPUs and OSs.

• Some details are very different, but the
concepts are the same.

C Call Stack

• When a function call is made, the return
address is put on the stack.

• Often the values of parameters are put on the
stack.

• Usually the function saves the stack frame
pointer (on the stack).

• Local variables are on the stack.

Stack Direction

• On Linux (x86) the stack grows from high
addresses to low.

• Pushing something on the stack moves from
the Top of Stack towards the address 0.

Parameters
Return Address

Calling Frame Pointer
Local Variables

A Stack Frame

00000000

Addresses

SP

SP+offset

Demo

• Jumps: http://nsfsecurity.pr.erau.edu/bom/Jumps.html
An introduction to the way languages like C use stack frames to

store local variables, pass variables from function to function
by value and by reference, and also return control to the
calling subroutine when the called subroutine exits. This uses
pseudocode in the place of C.

• Stacks: http://nsfsecurity.pr.erau.edu/bom/Stacks.html

“Smashing the Stack”*

• The general idea is to overflow a buffer so
that it overwrites the return address.

• When the function is done it will jump to
whatever address is on the stack.

• We put some code in the buffer and set the
return address to point to it!

*taken from the title of an article in Phrack 49-7

Before and After

void foo(char *s) {

char buf[100];

strcpy(buf,s);

…

address of s
return-address

saved sp

buf

address of s
pointer to pgm

Small Program

Issues

• How do we know what value the pointer
should have (the new “return address”).
– It’s the address of the buffer, but how do we know

what address this is?

• How do we build the “small program” and put
it in a string?

Guessing Addresses

• Typically you need the source code so you
can estimate the address of both the
buffer and the return-address.

• An estimate is often good enough! (more
on this in a bit).

Building the
small program

• Typically, the small program stuffed in to the
buffer does an exec().

• Sometimes it changes the password of a
database or other files…

exec()

• In Unix, the way to run a new program is with
the exec() system call.
– There is actually a family of exec() system

calls…
– This doesn't create a new process, it changes the

current process to a new program.
– To create a new process you need something else

(fork()).

exec() example
#include <stdio.h>

char *args[] = {"/bin/ls", NULL};

void execls(void) {
execve("/bin/ls",args);
printf(“I’m not printed\n");

}

More on:
http://geoffgarside.co.uk/2009/08/28/
using-execve-for-the-first-time/

http://geoffgarside.co.uk/2009/08/28/using-execve-for-the-first-time/

Generating a String

• You can take code like the previous slide,
and generate machine language.

• Copy down the individual byte values and
build a string.

• To do a simple exec requires less than 100
bytes.

A Sample Program/String

• Does an exec() of /bin/ls:
unsigned char cde[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0”
“\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
“\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/ls";

Some important issues

• The small program should be position-
independent – able to run at any memory
location.

• It can’t be too large, or we can’t fit the
program and the new return-address on the
stack!

Sample Overflow Program
unsigned char cde[] = "\xeb\x1f\…

void tst(void) {
int *ret;
ret = (int *)&ret+2; // pointer arith!
(*ret) = (int) cde; //change ret addr

}

int main(void) {
printf("Running tst\n");
tst();
printf("foo returned\n");

}

Attacking a real program

• Recall that the idea is to feed a server a string
that is too big for a buffer.

• This string overflows the buffer and overwrites
the return address on the stack.

• Assuming we put our small program in the
string, we need to know it’s address.

NOPs

• Most CPUs have a No-Operation instruction –
it does nothing but advance the instruction
pointer.

• Usually we can put a bunch of these ahead of
our program (in the string).

• As long as the new return-address points to a
NOP we are OK.

Using NOPs

Real program
(exec /bin/ls or whatever)

new return address

nop instructions

Can point

anywhere

in here

Estimating the stack size

• We can also guess at the location of the
return address relative to the overflowed
buffer.

• Put in a bunch of new return addresses!

Estimating the Location

Real program

new return address

nop instructions

new return address

new return address
new return address

new return address
new return address

vulnerable.c
void foo(char *s) {
char name[200];
strcpy(name,s);
printf("Name is %s\n",name);

}
int main(void) {
char buf[2000];
read(0,buf,2000);
foo(buf);

}

Demo -- Spock

• http://nsfsecurity.pr.erau.edu/bom/Spock.html
Demonstrates what is commonly called a "variable
attack" buffer overflow, where the target is data.
1. Play or step forward until data is requested (to be
typed into the top box) - then enter an incorrect answer
and run to completion, "access denied"
2. Run the applet a 2nd time and enter the correct
password
3. Now figure out what password data to type to gain
access as Dr. Bones when they
don't know the correct password and run the applet a
3rd time.

Demo -- Smasher

• http://nsfsecurity.pr.erau.edu/bom/Smasher.html
• This program has some "bad code", a subroutine that we

hypothesize has some bad code in it
• Run the applet and enter some normal data, showing the start

and end of the data for each subroutine, including the return
pointers

• Invite the students to figure out how to "smash the stack",
forcing control to go to "DontCallThisFunction". Hint: figure
out the ascii character for the first address of that subroutine
on the stack.

• Stack guard:
http://nsfsecurity.pr.erau.edu/bom/StackGuard.html

