
Chapter 3
Operating Systems Concepts
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A Computer Model
• An operating system has to deal with the fact 

that a computer is made up of a CPU, random 
access memory (RAM), input/output (I/O) 
devices, and long-term storage. 
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OS Concepts
• An operating system (OS) provides the 

interface between the users of a computer 
and that computer’s hardware. 
– An operating system manages the ways 

applications access the resources in a computer, 
including its disk drives, CPU, main memory, input 
devices, output devices, and network interfaces.

– An operating system manages multiple users.
– An operating system manages multiple programs. 
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Multitasking
• Give each running program a “slice” of the CPU’s time.
• The CPU is running so fast that to any user it appears that the 

computer is running all the programs simultaneously.
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3.1.1 The Kernel
• The kernel is the core component of 

the operating system. It handles the 
management of low-level hardware 
resources, including memory, 
processors, and input/output (I/O) 
devices, such as a keyboard, mouse, 
or video display.

• Most operating systems define the 
tasks associated with the kernel in 
terms of a layer metaphor, with the 
hardware components, such as the 
CPU, memory, and input/output 
devices being on the bottom, and 
users and applications being on the 
top. 5
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Input/Output
• The input/output devices of a computer include things 

like its keyboard, mouse, video display, and network 
card, as well as other more optional devices, like a 
scanner, Wi-Fi interface, video camera, USB ports, etc. 

• Each such device is represented in an operating system 
using a device driver, which encapsulates the details of 
how interaction with that device should be done. 
– The application programmer interface (API), which the 

device drivers present to application programs, allows those 
programs to interact with those devices at a fairly high level, 
while the operating system does the “heavy lifting” of 
performing the low-level interactions that make such devices 
actually work. 6



System Calls
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• User applications don’t communicate directly with 
low-level hardware components, and instead 
delegate such tasks to the kernel via system calls.

• System calls are usually contained in a collection of 
programs, that is, a library such as the C library (libc), 
and they provide an interface that allows applications 
to use a predefined series of APIs that define the 
functions for communicating with the kernel.
– Examples of system calls include those for performing file 

I/O (open, close, read, write) and running application 
programs (exec).



3.1.2 Processes
• A process is an instance of a program 

that is currently executing.
• The actual contents of all programs are 

initially stored in persistent storage, 
such as a hard drive.

• In order to be executed, a program 
must be loaded into random-access 
memory (RAM) and uniquely identified 
as a process. 

• In this way, multiple copies of the same 
program can be run as different 
processes.
– For example, we can have multiple copies of 

MS Powerpoint open at the same time.
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Process IDs
• Each process running on a given computer is identified by a 

unique nonnegative integer, called the process ID (PID). 
• Given the PID for a process, we can then associate its CPU 

time, memory usage, user ID (UID), program name, etc.
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Users and the Process Tree

• If a user creates a new process by making a 
request to sun some program, 

• The kernel sees this as an existing process 
asking to create a new process. 

• The process is called forking. 
• The existing process is the parent process and 

the one being forked is known as the child  
process. 
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Inter-process communication

1. Pass messages by reading and writing files
2. Share the same region of physical memory
3. Pipes and sockets: the sending and receiving 

processes to share the pipe or socket as an 
in-memory object. 
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Inter-process communication

• Signals: in Unix-based system, processes can 
send direct messages to each other 
asynchronously. 

• Remote Procedure Calls: Windows rely on 
remote procedure calls (RPC) which allows a 
process to call a subroutine from another 
process’s program. 
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Daemons and Services
• Computers run dozens of processes that run without 

any user intervention. 
• In linux, these background processes are know as 

daemons. 
• They are indistinguishable from any other process, are 

started by init process and operate at varying levels of 
permissions. 

• They are forked before the user is authenticated, and 
able to run with higher permissions than any user, and 
survive the end of the login sessions. 

• Examples are processes that control web servers, 
remote logins, and print servers.  
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Daemons and Services

• Windows have an equivalent class of 
processes known as services. 

• They are easily distinguishable from other 
processes, 

• are differentiated in monitoring software such 
as Task Manager.  
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3.1.3 File Systems

• A filesystem is an abstraction of how the external, 
nonvolatile memory of the computer is organized. 

• Operating systems typically organize files 
hierarchically into folders, also called directories.

• Each folder may contain files and/or subfolders. 
• Thus, a volume, or drive, consists of a collection of 

nested folders that form a tree. 
• The topmost folder is the root of this tree and is also 

called the root folder.
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File System Example
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File Permissions
• File permissions are checked by the operating system to 

determine if a file is readable, writable, or executable by a user 
or group of users.

• In Unix-like OS’s, a file permission matrix shows who is allowed 
to do what to the file.
– Files have owner permissions, which show what the owner 

can do, and group permissions, which show what some 
group id can do, and world permissions, which give default 
access rights.
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3.1.4 Memory Management

• The RAM memory of a computer is its address space.
• It contains both the code for the running program, its 

input data, and its working memory. 
• For any running process, it is organized into different 

segments, which keep the different parts of the 
address space separate.

• As we will discuss, security concerns require that we 
never mix up these different segments.
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Memory Organization
• Text. This segment contains the actual (binary) machine code of 

the program.
• Data. This segment contains static program variables that have 

been initialized in the program code.
• BSS. This segment, which is named for an antiquated acronym for 

block started by symbol, contains static variables that are 
uninitialized.

• Heap. This segment, which is also known as the dynamic segment, 
stores data generated during the execution of a process.

• Stack. This segment houses a stack data structure that grows 
downwards and is used for keeping track of the call structure of 
subroutines (e.g., methods in Java and functions in C) and their 
arguments.
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Memory Layout
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Virtual Memory
• There is generally not enough 

computer memory for the address 
spaces of all running processes.

• Nevertheless, the OS gives each 
running process the illusion that it has 
access to its complete (contiguous) 
address space.

• In reality, this view is virtual, in that the 
OS supports this view, but it is not 
really how the memory is organized.

• Instead, memory is divided into pages, 
and the OS keeps track of which ones 
are in memory and which ones are 
stored out to disk.
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Page Faults
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Process
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3.1.5 Virtual Machines
• Virtual machine: A view that an OS presents that a 

process is running on a specific architecture and OS, 
when really it is something else. E.g., a windows 
emulator on a Mac.

• Benefits:
– Hardware Efficiency
– Portability
– Security
– Management
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