
Chapter 3
Operating Systems Concepts

1

A Computer Model
• An operating system has to deal with the fact

that a computer is made up of a CPU, random
access memory (RAM), input/output (I/O)
devices, and long-term storage.

2

Disk DriveRAM
CPU

0
1
2
3
4
5
6
7
8
9
.
.
.

I/O

OS Concepts
• An operating system (OS) provides the

interface between the users of a computer
and that computer’s hardware.
– An operating system manages the ways

applications access the resources in a computer,
including its disk drives, CPU, main memory, input
devices, output devices, and network interfaces.

– An operating system manages multiple users.
– An operating system manages multiple programs.

3

Multitasking
• Give each running program a “slice” of the CPU’s time.
• The CPU is running so fast that to any user it appears that the

computer is running all the programs simultaneously.

4
Public domain image from http://commons.wikimedia.org/wiki/File:Chapters_meeting_2009_Liam_juggling.JPG

3.1.1 The Kernel
• The kernel is the core component of

the operating system. It handles the
management of low-level hardware
resources, including memory,
processors, and input/output (I/O)
devices, such as a keyboard, mouse,
or video display.

• Most operating systems define the
tasks associated with the kernel in
terms of a layer metaphor, with the
hardware components, such as the
CPU, memory, and input/output
devices being on the bottom, and
users and applications being on the
top. 5

User Applications

Non-essential OS
Applications

The OS Kernel

CPU, Memory,
Input/Output

Userland

Operating System

Hardware

Input/Output
• The input/output devices of a computer include things

like its keyboard, mouse, video display, and network
card, as well as other more optional devices, like a
scanner, Wi-Fi interface, video camera, USB ports, etc.

• Each such device is represented in an operating system
using a device driver, which encapsulates the details of
how interaction with that device should be done.
– The application programmer interface (API), which the

device drivers present to application programs, allows those
programs to interact with those devices at a fairly high level,
while the operating system does the “heavy lifting” of
performing the low-level interactions that make such devices
actually work. 6

System Calls

7

• User applications don’t communicate directly with
low-level hardware components, and instead
delegate such tasks to the kernel via system calls.

• System calls are usually contained in a collection of
programs, that is, a library such as the C library (libc),
and they provide an interface that allows applications
to use a predefined series of APIs that define the
functions for communicating with the kernel.
– Examples of system calls include those for performing file

I/O (open, close, read, write) and running application
programs (exec).

3.1.2 Processes
• A process is an instance of a program

that is currently executing.
• The actual contents of all programs are

initially stored in persistent storage,
such as a hard drive.

• In order to be executed, a program
must be loaded into random-access
memory (RAM) and uniquely identified
as a process.

• In this way, multiple copies of the same
program can be run as different
processes.
– For example, we can have multiple copies of

MS Powerpoint open at the same time.
8

Process IDs
• Each process running on a given computer is identified by a

unique nonnegative integer, called the process ID (PID).
• Given the PID for a process, we can then associate its CPU

time, memory usage, user ID (UID), program name, etc.

9

Users and the Process Tree

• If a user creates a new process by making a
request to sun some program,

• The kernel sees this as an existing process
asking to create a new process.

• The process is called forking.
• The existing process is the parent process and

the one being forked is known as the child
process.

10

Inter-process communication

1. Pass messages by reading and writing files
2. Share the same region of physical memory
3. Pipes and sockets: the sending and receiving

processes to share the pipe or socket as an
in-memory object.

11

Inter-process communication

• Signals: in Unix-based system, processes can
send direct messages to each other
asynchronously.

• Remote Procedure Calls: Windows rely on
remote procedure calls (RPC) which allows a
process to call a subroutine from another
process’s program.

12

Daemons and Services
• Computers run dozens of processes that run without

any user intervention.
• In linux, these background processes are know as

daemons.
• They are indistinguishable from any other process, are

started by init process and operate at varying levels of
permissions.

• They are forked before the user is authenticated, and
able to run with higher permissions than any user, and
survive the end of the login sessions.

• Examples are processes that control web servers,
remote logins, and print servers.

13

Daemons and Services

• Windows have an equivalent class of
processes known as services.

• They are easily distinguishable from other
processes,

• are differentiated in monitoring software such
as Task Manager.

14

3.1.3 File Systems

• A filesystem is an abstraction of how the external,
nonvolatile memory of the computer is organized.

• Operating systems typically organize files
hierarchically into folders, also called directories.

• Each folder may contain files and/or subfolders.
• Thus, a volume, or drive, consists of a collection of

nested folders that form a tree.
• The topmost folder is the root of this tree and is also

called the root folder.

15

File System Example

16

File Permissions
• File permissions are checked by the operating system to

determine if a file is readable, writable, or executable by a user
or group of users.

• In Unix-like OS’s, a file permission matrix shows who is allowed
to do what to the file.
– Files have owner permissions, which show what the owner

can do, and group permissions, which show what some
group id can do, and world permissions, which give default
access rights.

17

3.1.4 Memory Management

• The RAM memory of a computer is its address space.
• It contains both the code for the running program, its

input data, and its working memory.
• For any running process, it is organized into different

segments, which keep the different parts of the
address space separate.

• As we will discuss, security concerns require that we
never mix up these different segments.

18

Memory Organization
• Text. This segment contains the actual (binary) machine code of

the program.
• Data. This segment contains static program variables that have

been initialized in the program code.
• BSS. This segment, which is named for an antiquated acronym for

block started by symbol, contains static variables that are
uninitialized.

• Heap. This segment, which is also known as the dynamic segment,
stores data generated during the execution of a process.

• Stack. This segment houses a stack data structure that grows
downwards and is used for keeping track of the call structure of
subroutines (e.g., methods in Java and functions in C) and their
arguments.

19

Memory Layout

20

Virtual Memory
• There is generally not enough

computer memory for the address
spaces of all running processes.

• Nevertheless, the OS gives each
running process the illusion that it has
access to its complete (contiguous)
address space.

• In reality, this view is virtual, in that the
OS supports this view, but it is not
really how the memory is organized.

• Instead, memory is divided into pages,
and the OS keeps track of which ones
are in memory and which ones are
stored out to disk.

21
ATM

Page Faults

22

Process

1. Process requests virtual address not in memory,
causing a page fault.

2. Paging supervisor pages out
an old block of RAM memory.

3. Paging supervisor locates requested block
on the disk and brings it into RAM memory.

“read 0110101”

“Page fault,
let me fix that.”

Blocks in
RAM memory:

Paging supervisor

External disk

old

new

3.1.5 Virtual Machines
• Virtual machine: A view that an OS presents that a

process is running on a specific architecture and OS,
when really it is something else. E.g., a windows
emulator on a Mac.

• Benefits:
– Hardware Efficiency
– Portability
– Security
– Management

23
Public domain image from http://commons.wikimedia.org/wiki/File:VMM-Type2.JPG

