Assignment6

Lab on Short Message RSA Attacks and Padding (100 points)

In short message attack of RSA, if it is known that Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from 0000 to 9999 to find the plaintext. Therefore, short message must be padded with random bits. If you are Eve, show that you are able to find the plaintext containing four digit numbers given ciphertext.

Optimal asymmetric encryption padding (OAEP) is recommended when short messages are encrypted with RSA algorithms. The following is the encryption and decryption processes of OAEP.

- Encryption
- Pad the message to make m-bit message M, if M is less than m-bit
- Choose a random number r
- User one-way function G that inputs r-bit integer and outputs m-bit integer. This is the mask.
- $\mathrm{P} 1=\mathrm{M} \oplus \mathrm{G}^{\circledR}$
- P2 $=\mathrm{H}(\mathrm{P} 1) \oplus \mathrm{r}$, function H inputs m-bit and outputs k-bit
- $\mathrm{C}=\mathrm{E}(\mathrm{P} 1| | \mathrm{P} 2)$. User RSA encryption here
- Decryption
- $P=D(P 1| | P 2)$
- Bob first recreates the value of r :
$H(P 1) \oplus P 2=H(P 1) \oplus H(P 1) \oplus r=r$
- Bob recreates msg:
$G(r) \oplus P 1=G(r) \oplus G(r) \oplus M=M$
Pad your message with OAEP padding and then encrypt by RSA.

What to submit:

A report describes how you find the unpadded short plaintext (30 points), describes what you have observed after you apply OAEP padding (30 points), and discusses feasibility of short message attack after padding (10 points).

Lab on RSA Encryption and Factorization Attacks (practice)

Encryption or decryption of messages using the RSA key pair.

1. Select Individual Procedures/RSA Cryptosystem/RSA Demonstration

2. Enter the RSA key $\mathbf{p}=\mathbf{4 7}, \mathbf{q}=\mathbf{7 9}, \mathbf{e}=37$. The parameters $\mathrm{N}=\mathrm{p}^{*} \mathrm{q}=3713$ and $\mathrm{phi}(\mathrm{N})=3588$ and $\mathrm{d}=97$ are calculated.

3. Click Alphabet and number system options

4. Choose specify alphabet under Alphabet Options and number system under Method for coding of text into number. Enter $\mathbf{2}$ in Block length in characters.

5. To confirm your entries, click on OK. You can now enter the input the text, "WORKSHOP AT CHATTANOOGA", in the input line and click on the Encrypt button.

6. To decrypt, copy text in Encryption into ciphertext 1999 \# 3408 \# 2545 \# 2798 \# 0001 \# 3284 \# 3613 \# 1404 \# 2932 \# 0208 \# 1095 \# 3306 to input text area. And click Decrypt button.

Encryption of the message with block length 1 v.s. encryption of the message with block length 2.

1. Create the RSA key $p=251, q=269, e=65537$. The value of N is \qquad the value of phi(N) is \qquad the value of private key d is \qquad .

2. Click Alphabet and number system options

Choose All 256 ASCII characters under Alphabet options, b-adic under Method for coding and a block into numbers and $\mathbf{1}$ in Block length in characters.

3. To confirm your entries, click on OK. You can now enter the input the text, "RUBY FALLS!", in the input line and click on the Encrypt button.

The encrypted version of this is the number sequence is \qquad

The number " $\#$ " serves here to visually split up the individual numbers. If you insert these numbers into the input line and then choose Decrypt, the original plaintext will be restored.

4. Click Alphabet and number system options

Choose All 256 ASCII characters under Alphabet options, b-adic under Method for coding and a block into numbers and $\mathbf{2}$ in Block length in characters.

5. To confirm your entries, click on OK.

6. You will receive a cipher text that is only half as long:

Attack on RSA encryption with short RSA modulus (practice)

The analysis is performed in two stages: first of all the prime factorization of the RSA modulus is calculated using factorization, and then in the second stage the secret key for encryption of the message is determined. After this, the cipher text can be decrypted with the cracked secret key.

We will figure out plaintext given

RSA modulus $\mathrm{n}=63978486879527143858831415041$

Public exponent $\mathrm{e}=17579$

Cipher text $=45411667895024938209259253423,16597091621432020076311552201$, 46468979279750354732637631044,32870167545903741339819671379

1. Factorization of the RSA modulus with the aid of prime factorization.

To break down the natural number, select menu sequence Indiv. Procedure/RSA Cryptosystem / Factorization of a Number.

2. The two components of the public key is

RSA modulus $\mathrm{n}=63978486879527143858831415041$

Public exponent $\mathrm{e}=17579$
Enter $n=63978486879527143858831415041$ as input and click Continue.

It is interesting to see which procedure broke down the RSA modulus the fastest.
2. Calculate the secret key \mathbf{d} from the prime factorization of n and the public key \mathbf{e} :

With the knowledge of the prime factors $p=145295143558111$ and $q=440334654777631$ and the public key e = 17579, we are in a position to decrypt the ciphertext.
3. Open the next dialog box via menu selection Indiv. Procedure/RSA Cryptosystem/RSA Demonstration:.
4. Enter $p=145295143558111$ and $q=440334654777631$ and the public key $\mathbf{e}=17579$.
5. Click on Alphabet and number system options and make the following settings:

Alphabet options: Specify alphabet

RSA variant: Normal

Method for coding a block into number: Number system

Block length: 14

Number system: Decimal

Method for coding a block into numbers
C b-adic © Number system
-Block length
The number of characters that are encrypted with each RSA operation.
The maximum size of a block is limited by the bit length of the modulus N , the number of characters in the alphabet, and the encoding method.
Block length in characters: $\sqrt{14}$ (Maximum block length 14 characters)
Number system
The numbers for encryption and decryption will be represented in the following radix:
(- Decimal
C Binary
C Octal
C Hexadecimal

QK
Cancel
6. Enter the following cipher text in the input text field. And click Decrypt button.

45411667895024938209259253423,
16597091621432020076311552201, 46468979279750354732637631044 , 32870167545903741339819671379

Check your results: "NATURAL NUMBERS ARE MADE BY GOD"

Side Channel Attack to RSA: (10 points)

1. Select from menu: "Analysis" \"Asymmetric Encryption" \"Side-Channel Attack on Textbook RSA"

2. Click "Introduction to the scenario".

3. Click "Perform preparation" and click "OK"

4. Click "OK" again.

5. Click "Generate session key" and "Session Key". The generated session key is "9E B7 61 D9 E4 F9 34 AA 91 F7 C4 CB 56 7D 98 88".

6. Click "Select asymmetr. key".

[^0]
8. Click "Encrypt document symmetry.", "Encrypt session key asymmetry." and "Save".

9. Click "Transmit message" and "Decrypt message".

10. Enter 1234 and click "OK".

11. Click "Intercept message" and "Start attack cycle".

12. Click "All steps at once" button.

Side-Channel Attack Successful

Congratulations!

You have executed a complete side-channel attack against the hybrid encryption protocol.

Please click on Trudy's info button to make sure whether the protocol attack really helped Trudy to decrypt the hybrid encrypted message.

13. Click "OK" and icon of Trudy (Attacker).

Intercepted, encrypted session key:
A1D9E964CE3862AB029389C16C3B384E78A89B0E28CE62B63026156EQA1ACD3FF833DABEBEDD6EA8E0B

Modified and encrypted session keys:

Decrypted session key (calculated by Trudy, based on Bob's responses):

9EB761D9E4F934AA91F7C4CB567D9880

Message (calculated by Trudy using the decrypted session key):
CrypTool (Starting example for the CrypTool version family 1.x)
CrypTool is a comprehensive free educational program about cryptography and cryptanalysis offering extensive online help and many visualizations.

```
QK
```

The session key is 9EB761D9E4F934AA91F7C4CB567D9888 which matches the one generated in Step 5.

[^0]: 7. Select Bob's key and click "OK".
