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Face Recognition

l Introduction
l Face recognition algorithms
l Comparison
l Short summary
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Face Recognition Algorithms

l We will introduce
l Eigenfaces
l Fisherfaces
l Elastic Bunch-Graph Matching 
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Eigenfaces

l Developed in 1991 by M.Turk
l Based on Principal Component Analysis 

(PCA)
l Relatively simple
l Fast
l Robust
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Eigenfaces

l PCA seeks directions that are efficient for 
representing the data

efficientnot efficient

Class A

Class B

Class A

Class B
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Eigenfaces

l PCA maximizes the total scatter

scatter

Class A

Class B
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Eigenfaces

l PCA reduces the dimension of the data
l Speeds up the computational time
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Eigenfaces, the algorithm

l Assumptions
l Square images with Width = Height = N 
l M is the number of images in the database
l P is the number of persons in the database
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Eigenfaces, the algorithm

l The database
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Eigenfaces, the algorithm

l We compute the average face
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Eigenfaces, the algorithm

l Then subtract it from the training faces
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Eigenfaces, the algorithm

l Now we build the matrix which is N2 by M

l The covariance matrix which is N2 by N2

m m m m m m m mA a b c d e f g hé ù= ë û
! ! ! !! ! ! !

Cov AAT=
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Eigenfaces, the algorithm

l Find eigenvalues of the covariance matrix
l The matrix is very large
l The computational effort is very big

l We are interested in at most M eigenvalues
l We can reduce the dimension of the matrix
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Eigenfaces, the algorithm

l Compute another matrix which is M by M

l Find the M eigenvalues and eigenvectors
l Eigenvectors of Cov and L are equivalent

l Build matrix V from the eigenvectors of L

L A AT=
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Eigenfaces, the algorithm

l Eigenvectors of Cov are linear combination 
of image space with the eigenvectors of L

l Eigenvectors represent the variation in the 
faces

U AV= V is Matrix of 
eigenvectors

m m m m m m m mA a b c d e f g hé ù= ë û
! ! ! !! ! ! !
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Eigenfaces, the algorithm

A: collection of the 
training faces

U: Face Space / 
Eigen Space
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Eigenfaces

l Eigenface of original faces
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Eigenfaces, the algorithm

l Compute for each face its projection onto 
the face space

l Compute the threshold
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Eigenfaces: Recognition 
Procedure

l To recognize a face

l Subtract the average face from it
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Eigenfaces, the algorithm
l Compute its projection onto the face space U

( )mU rTW =
!

22 1..i i for i Me = W-W =

l Compute the distance in the face space 
between the face and all known faces
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Eigenfaces, the algorithm

l Reconstruct the face from eigenfaces

l Compute the distance between the face
and its reconstruction

s U= W
!

22
mr sx = -
! !
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Eigenfaces, the algorithm

l Distinguish between
l If            then it’s not a face; the distance 

between the face and its reconstruction is 
larger than threshold

l If                                      then it’s a new face
l If                                       then it’s a known 

face because the distance in the face space 
between the face and all known faces is larger 
than threshold

x q³

, ( 1.. )iand i Mx q e q< ³ =

{ }min iandx q e q< <



24

Eigenfaces, the algorithm
l Problems with eigenfaces

l Different illumination
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Eigenfaces, the algorithm

l Problems with eigenfaces
l Different head pose
l Different alignment
l Different facial expression
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Fisherfaces

l Developed in 1997 by P.Belhumeur et al.
l Based on Fisher’s Linear Discriminant 

Analysis (LDA)
l Faster than eigenfaces, in some cases
l Has lower error rates
l Works well even if different illumination
l Works well even if different facial express.
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Fisherfaces

l LDA seeks directions that are efficient for 
discrimination between the data

Class A

Class B
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Fisherfaces

l LDA maximizes the between-class scatter
l LDA minimizes the within-class scatter

Class A

Class B



29

Fisherfaces, the algorithm

l Assumptions
l Square images with Width=Height=N 
l M is the number of images in the database
l P is the number of persons in the database
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Fisherfaces, the algorithm
l The database
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Fisherfaces, the algorithm 
l We compute the average of all faces
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Fisherfaces, the algorithm

l Compute the average face of each person
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Fisherfaces, the algorithm

l And subtract them from the training faces
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Fisherfaces, the algorithm

l We build scatter matrices S1, S2, S3, S4

l And the within-class scatter matrix SW
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Fisherfaces, the algorithm

l The between-class scatter matrix

l We are seeking the matrix W maximizing 

( )( ) ( )( ) ( )( ) ( )( )2 2 2 2BS x m x m y m y m z m z m w m w mT T T T= - - + - - + - - + - -
! ! ! ! ! ! ! ! ! ! ! ! ! !! !
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Fisherfaces, the algorithm

If SW  is nonsingular (               ):
l Columns of W are eigenvectors of

l We have to compute the inverse of SW

l We have to multiply the matrices
l We have to compute the eigenvectors

1
W BS S-

2M N³
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Fisherfaces, the algorithm

If SW  is nonsingular (               ):
l Simpler:

l Columns of W are eigenvectors satisfying

l The eigenvalues are roots of

l Get eigenvectors by solving

B i i W iS w S wl=

0B i WS Sl- =

( ) 0B i W iS S wl- =

2M N³
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Fisherfaces, the algorithm

If SW  is singular (              ):
l Apply PCA first

l Will reduce the dimension of faces from N2 to M
l There are M M-dimensional vectors

l Apply LDA as described

2M N<
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Fisherfaces, the algorithm

l Project faces onto the LDA-space

l To classify the face
l Project it onto the LDA-space
l Run a nearest-neighbor classifier

, ,
,

LDA LDA

LDA LDA

x W x y W y
z W z w W w

T T

T T

= =

= =

! ! ! !

! !! !
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Fisherfaces, the algorithm

l Problems
l Small databases 
l The face to classify must be in the DB
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PCA & Fisher’s Linear Discriminant



42

PCA & Fisher’s Linear Discriminant
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Comparison
l FERET database

best ID rate: eigenfaces 80.0%, fisherfaces 93.2%
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Comparison

l Eigenfaces
l project faces onto a lower dimensional sub-

space
l no distinction between inter- and intra-class 

variabilities
Ø optimal for representation but not for 

discrimination
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Comparison

l Fisherfaces
l find a sub-space which maximizes the ratio of 

inter-class and intra-class variability
l same intra-class variability for all classes
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Local Feature Analysis
-- Elastic Bunch-Graph Matching
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Face Features

l Facial recognition utilizes distinctive features of 
the face – including:  distinct micro elements like:
l Mouth, Nose, Eye, Cheekbones, Chin, Lips, Forehead, 

Ears
l Upper outlines of the eye sockets, the areas 

surrounding the cheekbones, the sides of the 
mouth, and the location of the nose and eyes. 

l The distance between the eyes, the length of the 
nose, and the angle of the jaw.
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Face Features
l Some technologies do not utilize areas of the face 

located near the hairline, so they are somewhat resistant 
to moderate changes in hairstyle.  

l When used in identification mode, facial recognition 
technology generally returns candidate lists of close 
matches as opposed to returning a single definitive 
match as does fingerprint and iris-scan. 

l The file containing facial micro features is called a 
"template." 

l Using templates, the software then compares that image 
with another image and produces a score that measures 
how similar the images are to each other. 
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l Typical sources of images for use in facial 
recognition include video camera signals 
and pre-existing photos such as those in 
driver's license databases. 
including:
l Distance between the micro elements
l A reference feature
l Size of the micro element
l Amount of head radiated from the face 

(unseen by human eye). Heat can be 
measured using an infrared camera. 

Face Features
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A face recognition based on local feature 
analysis

l A face is represented as a graph, whose nodes, 
positioned in correspondence to the facial 
fiducial points. 
l A fiducial point is a point or  line  on a scale used for 

reference or comparison purposes. 
l A face recognition system uses an automatic 

approach to localize the facial fiducial points.
l It then determines the head pose and compares 

the face with the gallery images.
l This approach is invariant to rotation, light and 

scale. 
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A template for the 34 fiducial points on a 
face image:
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EBGM
l Elastic Bunch-Graph Matching (EBGM) algorithm 

locates landmarks on an image, such as the eyes, nose, 
and mouth. 

l Gabor jets are extracted from each landmark and are 
used to form a face graph for each image. A face graph 
serves the same function as the projected vectors in the 
PCA or LDA algorithm; they represent the image in a low 
dimensional space. 

l After a face graph has been created for each test image, 
the algorithm measures the similarity of the face graphs.

l Paper:http://www.snl.salk.edu/~fellous/posters/Bu97post
er/BUPoster.pdf

http://www.snl.salk.edu/~fellous/posters/Bu97poster/BUPoster.pdf
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Summary

l Three algorithms have been introduced
l Eigenfaces

l Reduce the dimension of the data from N2 to M
l Verify if the image is a face at all
l Allow online training
l Fast recognition of faces
l Problems with illumination, head pose etc 
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Summary
l Fisherfaces

l Reduce dimension of the data from N2 to P-1
l Can outperform eigenfaces on a representative DB
l Works also with various illuminations etc
l Can only classify a face which is “known” to DB
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Summary

l Elastic Bunch-Graph Matching
l Reduce the dimension of the data from N2 to 
M

l Recognize face with different poses
l Recognize face with different expressions
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http://www.face-rec.org/interesting-papers/
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Wednesday (Nov. 17th)
l Present one of the following algorithms

l Elastic Bunch-Graph Matching (EBGM) 
algorithm

l Bayesian Intrapersonal/Extrapersonal
Classifier, or

l One from http://www.face-rec.org/interesting-
papers/

l Hands-on Lab of Face Biometrics
l http://www.cs.colostate.edu/evalfacerec/
l User Guide 

http://www.face-rec.org/interesting-papers/
http://www.cs.colostate.edu/evalfacerec/

