
1

Finger Biometric
-- Neural networks



Neural networks
• Neural networks are made up of many artificial neurons. 
• Each input into the neuron has its own weight associated with 

it illustrated by the red circle. 
• A weight is simply a floating point number and it's these we 

adjust when we eventually come to train the network.

2



Neural networks
• A neuron can have any number of inputs from one to 

n, where n is the total number of inputs. 
• The inputs may be represented therefore as x1, x2, x3… 

xn. 
• And the corresponding weights for the inputs as w1, 

w2, w3… wn. 
• Output a = x1w1+x2w2+x3w3... +xnwn

3



How do we actually use an artificial 
neuron?

• Feedforward network: The neurons in each layer feed their 
output forward to the next layer until we get the final output 
from the neural network.

• There can be any number of hidden layers within a 
feedforward network. 

• The number of neurons can be completely arbitrary.

4



Neural Networks by an Example
• let's design a neural network that will detect the number '4'. 
• Given a panel made up of a grid of lights which can be either on or off, we 

want our neural net to let us know whenever it thinks it sees the character 
'4'. 

• The panel is eight cells square and looks like this: 
• the neural net will have 64 inputs, each one representing a particular cell in 

the panel and a hidden layer consisting of a number of neurons (more on 
this later) all feeding their output into just one neuron in the output layer 

5



Neural Networks by an Example
• initialize the neural net with random weights 
• feed it a series of inputs which represent, in this example, the 

different panel configurations 
• For each configuration we check to see what its output is and 

adjust the weights accordingly so that whenever it sees 
something looking like a number 4 it outputs a 1 and for 
everything else it outputs a zero. 

• More: 
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/rep
ort.html

6

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html


Multi-Layer Perceptron (MLP)

7



We will introduce the MLP and the backpropagation 
algorithm which is used to train it

MLP used to describe any general feedforward (no 
recurrent connections) network 

However, we will concentrate on nets with units 
arranged in layers 

x1

xn

8



Different books refer to the above as either 4 layer (no. of 
layers of neurons) or 3 layer (no. of layers of adaptive 
weights). We will follow the latter convention

1st question:

what do the extra layers gain you? Start with looking at 
what a single layer can’t do

x1

xn

9



Perceptron Learning Theorem
• Recap: A perceptron (threshold unit) can 

learn anything that it can represent (i.e. 
anything separable with a hyperplane)

10



The Exclusive OR problem

A Perceptron cannot represent Exclusive OR 
since it is not linearly separable.

11



12



Minsky & Papert (1969) offered solution to XOR problem by 
combining perceptron unit responses using a second layer of 
Units.   Piecewise linear classification using an MLP with 
threshold (perceptron) units

1

2

+1

+1

3

13



xn

x1

x2

Input Output

Three-layer networks

Hidden layers 14



Properties of architecture

• No connections within a layer 

y f w x bi ij j i
j

m
= +å

=
( )

1

Each unit is a perceptron

15



Properties of architecture

• No connections within a layer
• No direct connections between input and output layers
•

y f w x bi ij j i
j

m
= +å

=
( )

1

Each unit is a perceptron

16



Properties of architecture

• No connections within a layer
• No direct connections between input and output layers
• Fully connected between layers
•

y f w x bi ij j i
j

m
= +å

=
( )

1

Each unit is a perceptron

17



Properties of architecture

• No connections within a layer
• No direct connections between input and output layers
• Fully connected between layers
• Often more than 3 layers
• Number of output units need not equal number of input units
• Number of hidden units per layer can be more or less than 

input or output units

y f w x bi ij j i
j

m
= +å

=
( )

1

Each unit is a perceptron

Often include bias as an extra weight 18



What do each of the layers do?

1st layer draws 
linear boundaries

2nd layer combines 
the boundaries

3rd layer can generate 
arbitrarily complex 
boundaries 19



Backward pass phase:  computes ‘error signal’, propagates
the error backwards through network starting at output units 
(where the error is the difference between actual and desired 
output values) 

Forward pass phase: computes ‘functional signal’, feed forward 
propagation of input pattern signals through network

Backpropagation learning algorithm ‘BP’

Solution to credit assignment problem in MLP. Rumelhart, Hinton and 
Williams (1986) (though actually invented earlier in a PhD thesis 
relating to economics)

BP has two phases:

20



Conceptually: Forward Activity -
Backward Error

21



Forward Propagation of Activity
• Step 1: Initialise weights at random, choose a 

learning rate η 
• Until network is trained:
• For each training example i.e. input pattern and 

target output(s):
• Step 2: Do forward pass through net (with fixed 

weights) to produce output(s)
– i.e., in Forward Direction, layer by layer:

• Inputs applied
• Multiplied by weights
• Summed
• ‘Squashed’ by sigmoid activation function
• Output passed to each neuron in next layer

– Repeat above until network output(s) produced
22



Step 3. Back-propagation of error
• Compute error (delta or local gradient) for each 
output unit δ k  

• Layer-by-layer, compute error (delta or local 
gradient) for each hidden unit δ j  by backpropagating 
errors (as shown previously) 
 
Step 4: Next, update all the weights Δwij 

By gradient descent, and go back to Step 2 
- The overall MLP learning algorithm, involving 

forward pass and backpropagation of error (until 
the network training completion), is known as the 
Generalised Delta Rule (GDR), or more 
commonly, the Back Propagation (BP) algorithm 

23



‘Back-prop’ algorithm summary 
(with Maths!)   (Not Examinable)

24



‘Back-prop’ algorithm summary 
(with NO Maths!)

25



MLP/BP: A worked example

26



Worked example: Forward Pass

27



Worked example: Forward Pass

28



Worked example: Backward Pass

29



Worked example: Update Weights
Using Generalized Delta Rule (BP)

30



Similarly for the all weights wij:

31



Verification that it works

32



Training

• This was a single iteration of back-prop
• Training requires many iterations with many 

training examples or epochs (one epoch is 
entire presentation of complete training set)

• It can be slow !
• Note that computation in MLP is local (with 

respect to each neuron)
• Parallel computation implementation is also 

possible

33



Training and testing data

• How many examples ?
– The more the merrier !

• Disjoint training and testing data sets
– learn from training data but evaluate 

performance (generalization ability) on 
unseen test data

• Aim: minimize error on test data

34


