
C H A P T E R 1 3

Recursion

Recursive Solution

 A recursive solution

 solves a problem by solving a smaller instance of the problem.

 Example

 How do we go about looking for a word in a dictionary?

 Two methods

 Sequential search

 Binary search

3

Recursive Solutions

 Sequential search
 Starts at the beginning of the collection
 examine every element until a match is found
 could be time consuming
 what if the list contained millions of elements?

 Binary search
 Repeatedly halves the collection and determines which

half could contain the item
 Uses a divide and conquer strategy

4

Dictionary

 Divide and conquer strategy

 First dividing the dictionary into two halves

 Chose the correct half

 Divide again into half (smaller problem)

 Continue until a base case is reached.

 we have reached a single page containing the word.

//Search a dictionary for a word using a recursive binary search
if (the dictionary contains only one page)
{

Scan the page for the word
}
else
{

Open the dictionary to a point near the middle.
Determine which half of the dictionary contains the word.
if (the word is in the first half of the dictionary)
{

Search the first half of the dictionary for the word.
}
else
{

Search the second half of the dictionary for the word.
} //end if

} //end if

6

Recursive Solutions

 Facts about a recursive solution

A recursive method calls itself

Each recursive call solves an identical, but
smaller, problem

A test for the base case enables the recursive calls
to stop

Base case: a known case in a recursive
definition

Eventually, one of the smaller problems must be
the base case

4 Question for Recursive Solutions

1. How can you define the problem in terms of a
smaller identical problem?

2. Do you diminish the size of the problem?

3. What instance of the problem can serve as the base
case?

4. As the problem size diminishes, will you reach this
base case?

7

8

Recursive Solutions

 Theory - can solve a large variety of problems.

 In practice
 computationally expensive
 can only be used to solve small instances of such problems

in a reasonable amount of time.

Triangle Problem

 Want to computer the area of the triangle

 Has a width n

 Each [] has area 1

 []

 [][]

 [][][]

 The third triangle number is 6.

Triangle Example Outline

public class Triangle

{

public Triangle(int aWidth)

{

width = aWidth;

}

public int getArea()

{

…….

}

private int width;

}

Complete getArea()

Take care of the case where the width is 1 or []

public int getArea()

{

if (width == 1) return 1;

}

Now that we know that we computer the area of the larger triangle as

smallerArea + width;

Complete getArea()

How do we get the smaller area?

Make a smaller area and calculate.

Triangle smallerTriangle = new Triangle(width -1)

int smallerArea = samllerTriangle.getArea();

public int getArea()

{

if (width == 1) return 1;

Triangle smallerTriangle = new Triangle(width -1)

int smallerArea = samllerTriangle.getArea();

return smallerArea + width;

}

Process

The getArea method makes a smaller triangle of width 3.

It calls getArea on that triangle.

That method makes a smaller triangle of width 2.

It calls getArea on that triangle.

That method makes a smaller triangle of width 1.

It calls the getArea on that triangle.

That method returns 1.

That method returns smallerArea + width = 1 + 2 = 3.

That method returns smallerArea + width = 3 + 3 = 6.

That method returns smallerArea + width = 6 + 4 + 10.

14

A Recursive Method:
The Factorial of n

 Problem

 Compute the factorial of an integer n

 An iterative definition of factorial(n)

factorial(n) = n * (n-1) * (n-2) * … * 1 for any integer n > 0

factorial(0) = 1

15

A Recursive Method:
The Factorial of n

 A recursive definition of factorial(n)
factorial(n) = 1 if n = 0

n * factorial(n-1) if n > 0

 A recurrence relation
 A mathematical formula that generates the terms in a

sequence from previous terms

 Example

factorial(n) = n * [(n-1) * (n-2) * … * 1]

= n * factorial(n-1)

Factorial

 factorial(4) = 4*factorial(3)

 factorial(3) = 3*factorial(2)

 factorial(2) = 2*factorial(1)

 factorial(1) = 1*factorial(0)

 factorial(0) = 1

 now we can solve it

16

Factorial

 factorial(0) = 1

 factorial(1) = 1*factorial(0) = 1*1 = 1

 factorial(2) = 2*factorial(1) = 2*1 = 2

 factorial(3) = 3*factorial(2) = 3*2 = 6

 factorial(4) = 4*factorial(3) = 4*6 = 24

17

Code
18

public class Factorial

{

public static void main(String [] arg)

{

fact(4);

}

public static int fact(int n)

{

if (n==0)

return 1;

else

{

int num = (n*fact(n-1));

System.out.println(num);

return num;

}

}

}

Permutations

 More complex example

 Write a class that lists all permutations of a string.

 How could we use such a class?

 Password cracker

 We have a given set of letters (all the alphabet)

 We simple write a program that will allow us to get all
permutations of that alphabet.

 The larger the original set – the more permutations – the
longer to crack

Permutations of “eat”

 Begin by removing the first letter. (e in this case)

 Generate all the combinations of the remaining letters

 at and ta

 Therefore all the possible combinations of beginning
with e are eat and eta

 Now get second letter (a in this case)

 Generate all the combinations of the remaining letters

 et and te

 Repeat for each remaining letter

import java.util.ArrayList;

public class PermutationGeneratorDemo

{

public static void main(String[] agrs)

{

PermutationGenerator generator = new

PermutationGenerator("eat");

ArrayList<String> permutations = generator.getPermutations();

for (String s: permutations)

{

System.out.println(s);

}

}

}

Permutation GeneratorDemo

PermutationGenerator

public class PermutationGenerator

{

public PermutationGenerator(String aWord)

{

word = AWord;

}

public ArrayList<String> getPermutations()

{

ArrayList<String> result = new ArrayList<String>();

// The empty string has a single permutations: iself

if (word.length() == 0)

{

result.add(word);

return result;

}

PermutationGenerator

// Loop through all character postions

for (int i=0; i<word.length(); i++)

{

// Form a simpler work by removing the ith character

String shorterWord = work.substring(0,i)

+ word.substring(i+1);

//Generate all permutations of the simpler word

PermutationGenerator shorterPermutationGenerator

= new PermutationGenerator(shorterWord);

ArrayList<String> shorterWordPermutations =

shorterPermutationGenerator.getPermutations();

PermutationGenerator

// Add the removed charater to the front of

// each permutation of the simpler word

for String s: shorterWordPermutations)

{

result.add(word.charAt(i) + s);

}

return result;

}

private String word;

}

Palindrome

 Test whether a string is equal to itself when you
reverse all the characters.

 Racecar

 Step 1: Consider ways to simplify inputs.

 Remove first character

 Remove last character

 Remove a character from the middle

 Cut the string into two halves.

Palindrome

 Step 2: See if the solutions you found in step 1, alone
or in combination, work in solving your problem.

 For palindrome try this

 If the first and last characters are both letter, then check to see
if they match. If so remove both and test again.

 If the last character isn’t a letter, remove it and test the shorter
string.

 If the first character isn’t a letter, remove it and test the shorter
string.

Palindrome

 Step 3: Find solutions to the simplest inputs.

 Simplest strings

 String with two characters

 Strings with single character

 The empty string

 Step 4: Implement the solution by combining the
simple cases and the reduction step.

Code for IsPalindrome

pubic boolean isPalindrome()

{

int length = text.length();

if (length <= 1) return true;

char first = Character.toLowerCase(text.charAt(0));

char last = Character.toLowerCase(text.charAt(length -1));

Code for IsPalindrome

// works only if both are letters)

if ((Character.isLetter(first) && Character.isLetter(last))

{

if (first==last)

{

// remove both first and last character.

Sentence shorter = new Sentence(text.substring 1, length -1));

return shorter.isPalindrome();

}

else return false;

}

Code for IsPalindrome

else if(! character.isLetter(last))

{

Sentence shorter = new Sentence(text.substring(0, length -1));

return shoter.isPalindrome();

}

else

{

Sentence shorter = new Sentence(text.substring(1));

return shorter.isPalindrome();

}

}

Helper Methods

 Assist by changing the original problem slightly

 Palindrome – create new sentence in every step

 Rather than testing whether the entire sentence is a
palindrome, check whether a substring is a
palindrome.

pubic boolean isPalindrome(int start, int end)

{

if (start >= end) return true;

char first = Character.toLowerCase(text.charAt(start));

char last = Character.toLowerCase(text.charAt(end));

if (Character.isLetter(first) && Character.isLetter(last))

{

if (first == last)

{

return isPalindrome(start +1, end -1)

}

else return false;

}

else if (!Charater.isLetter(last))

{

return isPalindrome(start,end-1);

}

else

{

return isPalindrome(start+1, end)

}

}

Method to Solve the Whole Problem

public boolean isPalindrome()

{

return isPalindrome(0, text.length() -1)

}

•Public sees this one.

•Work is performed by other one

Efficiency

 Occasionally runs much slower

 Most cases only slightly slower

 Easier to understand

 Easier to implement

Fibonacci Sequence

 Series of equations

 Definitions

 f1 = 1

 f2 = 1

 fn = fn-1 + fn-2

Code

public class Recursive Fib

{

public static void main(String[] args)

{

Scanner in = new Scanner(System.in);

System.out.println("Enter n: ");

int n = in.nextInt();

for (int i = 1; k <=n; i++)

{

long f = fib(i);

System.out.println("fib(" + i + ") = " + f);

}

}

public static long fib(int n)

{

if (n <=2) return 1:

else return fib(n - 1) + fib(n - 2);

}

}

