
Chapter 15

A data structure used for collecting a

sequence of objects

Easy to add and remove elements

Example
• Maintaining a list of employees

• Maintained by name

Problem with storing in array
• Shifting when inserting or deleting

Answer
• Inserting or deleting in linked list does not require

Consists of a number of notes, each of

which has a reference to the next node.

Visiting elements
• Sequential order is effective

• Random order is not effective

Sequence of Nodes
• Node

 Value or object

 Reference to next node

• Remove a Node

 Change the reference

• How do I get to the node

 List iterator

 Goes to 1st node

 Goes to node it is pointing to

 Continues till you get to the node

Generic class

Must use < >

Put the kind of object in < >

Use methods to add to beginning and

end

Traversing the linked list
• List Iterator

Type String

LinkedList<String> students = new

LinkedList<String>();

Type BankAccounts

LinkedList<BankAccount> students = new

LinkedList<BankAccount>();

Add first node
Students.addLast(“Dick”);

Add another node after “Dick”
• Student.addLast(“Tom”);

Node<Students>

“Dick”

Null

Node<Students>

“Dick”

Node<Students>

“Tom”

Null

void addFirst(element)

void addLast(element)

e getFirst()

e getLast()

e removeFirst()

e removeLast()

Notice no way to move within list

 listIterator is a method of the LinkedList

class.

Create

LinkedIterator<String>

iterator = students.listIterator();

Purpose: to iterate through a list of and

visit each element.

Begins before the first element.

Move Forward
iterator.next();

• Returns the element that the iterator is passing.

• The type to be returned will depend on the type
specified in the <>

Check to see if there is another element
if (iterator.hasNext());

Add
• Iterator.add(“Kathy”);

• Added after iterator position

• Moves position

Remove
• Iterator.remove()

• Removes the object that was returned by last call

to next or previous

Careful using the remove method
• Can be called only once after calling next()

• Cannot call remove immediately after a call to

add.

Nodes store tow links:
• One to next element

• One to previous element

Doubly linked list

For listIterator method
• Has previous

• previous

Traverse entire list
• For each loop

For (String name: students)

{

String studentName = name.getName();

System.out.println(studentName);

}

Node Class
public class Node

{

public Object data;

public Node next;

}

• data is the object we want to add

• next is the location of the next node

Create First or Head
• Pointer to initial element in the linked list

• Initially it will be blank

• Would go in constructor of linked list

public LinkedList ()

{

first = null;

}

Method to Retrieve First/Head

public Object getFirst()

{

if (first == null)

throw new NoSuchElement Exception();

return first;

}

Method to Add First/Head

Special case

New list pointer must point to it

data =

data =

next =

first =

Node
Node

Node

next =

1
2

3

Method to Add First/Head

public void addFirst(Object element)

{

Node newNode = newNode();

newNode.data = element;

newNode.next = first;

first = newNode;

}

Method to Remove first element in the list

public void removeFirst()
{

if (first = = null)
throw new NoSuchElementException();

Object element = first.data;
first = first.next();
return element;

}

Standard library implements 9 methods

we will only implement only 5

 Iterator class
• Inner class to LinkedList

• Has access to private member of LinkedList

• Has access to first and the private Node class

public ListIterator listIterator()

{

return new LinkedListIterator();

}

private class LinkedListIterator
implements ListIterator

{
public LinkedListIterator()
{

position = null;
previous = null;

}
private Node position;
private Node previous;
……
}

// position is the lsat visited node.
private class LinkedListIterator

implement ListIterator
{

…..
public Object next()
{
if(!hasNext())

throw new NoSuch ElementExceeption
previous = position; // remember for remove
if (position == null)

position = first;
else

position = position.next;
return position.data;
}

private class LinkedListIterator
implement ListIterator

{
……
public boolean hasNext()
{

// check for no element after current
if (position == null)

return first ! = null;
else

return position.next !=null;

public void remove()
{

if (previous == position)
throw new IllegalStateException();

if (postion == first)
{

removeFirst();
}
else
{

previous.next = position.next;
}
position = previous;

}

Remember: position points to the last visited node.
previous points to the last node before that.

public void set(Object element)

{

if (previous == position)

throw new IllegalStateException();

position.data = element;

}

public void add(Object element)
{

if (position == null)
{

addFirst(element);
postion = first;

}
else
{

Node newNode = new Node();
newNode.data = element;
newNode.next = postion.next;
position.next = newNode;
postion = newNode;

}
previous = position;

}

Concrete
• Sequence of node objects with the links between

them.

Abstract
• A linked list is an ordered sequence of data

items that can be traversed with a iterator

Abstract Data Type
• Define the fundamental operations on the data

but does not specify an implementation

public interface ListIterator

{

Object next();

boolean hasNext();

void add(Object element);

void remove();

void set(Object element);

…..

}

Stack
• Collection of items with “last in first out”

retrieval.

• Can insert or remove at the top only

• Can insert in middle

Queue
• Collection of times with “first in first out”

retrieval.

• Add at the end

• Remove at the top

Stack class in Java Library

How to use
• Stack <String> s = new Stack<String>();

• s.push()

• s.pop()

• s.peek()

 Java class uses an array to implement

Can be easily implemented in a linked

list

A stack can be used to verify whether a

program contains balanced braces
• An example of balanced braces

abc{defg{ijk}{l{mn}}op}qr

• An example of unbalanced braces

abc{def}}{ghij{kl}m

Requirements for balanced braces
• Each time you encounter a “}”, it matches an

already encountered “{”

• When you reach the end of the string, you have

matched each “{”

Figure 7.2

Traces of the algorithm that checks for balanced braces

StackException

• A Java method that implements the balanced-

braces algorithm should do one of the following

 Take precautions to avoid an exception

 Provide try and catch blocks to handle a possible

exception

Queue class in Java Library
How to use

• Queue <Integer> q = new Queue<Integer>();

• q.add() // adds to the tail

• q.remove() // removes from the top

• q.peek() //get the head of the queue without
removing

 Java class uses an array to implement
Can be easily implemented in a linked

list

import java.util.LinkedList;

public class LinkedListQueue

{

public LinkedListQueue()

{

list = new LinkedList();

}

public void add(Object element)

{

list.addLast(element);

}

public Object remove()

{

return list.removeFirst();

}

int size()

{

return list.size();

}

private LinkedList list;

}

When the ADT stack is used to solve

a problem, the use of the ADT’s

operations should not depend on its

implementation

To evaluate an infix expressions
• Convert the infix expression to postfix form

• Evaluate the postfix expression

4/5/202141

4/5/2021
42

 In prefix notation the operator is

written before its operands without the

use of parentheses or rules of

operator precedence.

The expression (A+B)/(C-D) would be

written as /+AB-CD in prefix notation.

4/5/2021
43

Postfix notation is a way of writing

algebraic expressions without the use

of parentheses or rules of operator

precedence.

The expression (A+B)/(C-D) would be

written as AB+CD-/ in postfix notation.

 A postfix calculator
• Requires you to enter postfix expressions

 Example: 2, 3, 4, +, *

• When an operand is entered, the calculator

 Pushes it onto a stack

• When an operator is entered, the calculator

 Applies it to the top two operands of the stack

 Pops the operands from the stack

 Pushes the result of the operation on the stack

http://scriptasylum.com/tutorials/infix_p

ostfix/algorithms/infix-postfix/index.htm

http://scriptasylum.com/tutorials/infix_postfix/algorithms/infix-postfix/index.htm

Figure 7.7

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

To evaluate a postfix expression which is
entered as a string of characters
• Simplifying assumptions
 The string is a syntactically correct postfix expression

 No unary operators are present

 No exponentiation operators are present

 Operands are single lowercase letters that represent
integer values

 An infix expression can be evaluated by first being
converted into an equivalent postfix expression

 Facts about converting from infix to postfix
• Operands always stay in the same order with respect to

one another

• An operator will move only “to the right” with respect to
the operands

• All parentheses are removed

Figure 7.8

A trace of the algorithm that converts the infix expression a - (b + c * d)/e to postfix

form

