
Chapter 11

 Data is often stored in files such as a text file
 We need to read that data into our program
 Simplest mechanism

▪ Scanner class

▪ First construct a FileReader object with the name
of the input file.

▪ Then use the FileReader to construct the Scanner

▪ FileReader reader = new FileReader(“input.txt”);

▪ Scanner in = new Scanner (reader);

▪ Now use standard Scanner objects to read

 Create an output file using PrintWriter
▪ PrintWriter out = new PrintWriter(“output.txt”);

▪ If the output files exits, it is emptied before output

▪ If it doesn’t exist, it will be created
 Now use print and println methods to output

▪ out.println(29.95);

▪ out.println(new Rectanble(5,10,15,25);

▪ out.println(“Hello World”);

▪ Converts numbers to decimal string representations

▪ Uses toString to convert objects to strings

 Close input

▪ in.close()

 Close output

▪ out.close()

▪ Exist program without close may loose data

 Get a FileNotFoundException
 We need the following code

public static void main(String[] args) throws
FileNotFoundException

import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

public class LineNumberer
{

public static void mian(String[] args)
throws FileNotFoundException

{
Scanner console = new Scanner (System.in);

System.out.println("Input file: ");
String inputFileName = console.next();

System.out.println("Output file: ");
String outputFileName = console.next();

FileReader reader = new FileReader(inputFileName);
Scanner in = new Scanner(reader);

PrintWriter out = new PrintWriter(outputFileName);
int lineNumber = 1;

while (in.hasNextLine())
{

String line = in.nextLine();
out.println("/* " + lineNumber + "*/ " + line);
lineNumber ++;

}

in.close();
out.close();

}
}

 Windows file name
 C:\homework\input.dat

 Must use double backslashes

in = new FileReader(“c: \\homework\\input.data”);

 Two main aspects to exception handling

▪ Reporting

▪ Recovery

 The point of reporting is often far apart from
the point of recovery

▪ What do we do if we find a problem?

 Flexible mechanism for passing control from
the point of error reporting to a competent
recovery handler.

 When you encounter an error condition you
just throw an appropriate exception.

 Then what

▪ Look for an appropriate exception class

▪ Java provides many classes

public class BankAccount
{

public void withdraw(double amount)
{

if (amount > balance)
{

IllegalArgumentException exception = new
IllegalArgumentException("Amount exceeds balance");

throw exception;
}
balance = balance = amount:
…………

}
}

 Instead of

IllegalArgumentException exception = new
IllegalArgumentException("Amount exceeds balance");

throw exception;

 Can use
throw new IllegalArgumentException

(“Amount exceeds balance”);

 Checked exceptions
▪ When you call a method that throws a checked

exception, compiler checks that you don’t ignore
it.

▪ You must tell the compiler what to do

▪ Likely to occur at times – no matter how careful
you are

 Unchecked Exceptions
▪ Not required to handle

▪ Considered your fault

 Signals the caller that your method may
encounter an exception.

 Your method may throw multiple exceptions

▪ Separate by commas

 Be aware of the hierarchy of the exceptions.

 Try Block
▪ One or more statements that may cause an exception.
▪ Put statements that may cause an exception inside the try

block.
try

{
String filename = ...;
FileReader reader = new FileReader(filename);
Scanner in = new scanner(reader);
String input = in.next();
int value = Integer.pareseInt(input);
......

}

 Put the handler (what you want done) inside the
catch.

catch(IOExceptions exception)
{

exception.printStackTrace();
}

catch (NumberFromatException exception)
{

System.out.println(“Input was not a number”)
}

 You need to take some action whether or not
an exception is thrown.

 For example close your files.
 These go in a finally block

finally
{

out.close();
}

 Once a try block is entered, the statements in
a finally clause are guaranteed to be
executed, whether or not an exception is
thrown.

 You have a condition that is not handled by
the standard java exceptions.

 For example, amount > balance

Throw new
InsufficitentFundsException(“withdrawal of “
+ amount + “ exceeds balance of “ + balance);

You need to define the
InsufficientFundsException class

 Checked or Unchecked

▪ Fault of external event – checked

▪ Fault of internal event - unchecked

public class InsufficientFundsException
extends RuntimeException

{
public InsufficientFundsExcetpion()
{
}

public InsufficientFundsException(String message)
{

super(message)
}

}

