Chapter 11

Input / Output and Exception
Handling

Reading and Writing Textfiles

Data is often stored in files such as a text file
We need to read that data into our program
Simplest mechanism

Scanner class

First construct a FileReader object with the name
of the input file.

Then use the FileReader to construct the Scanner

Input Files

FileReader reader = new FileReader("input.txt”);
Scanner in = new Scanner (reader);
Now use standard Scanner objects to read

Output Data

Create an output file using PrintWriter
PrintWriter out = new PrintWriter(“output.txt”);
If the output files exits, it is emptied before output
If it doesn’t exist, it will be created

Now use print and println methods to output
out.printin(29.95);
out.printin(new Rectanble(s,10,15,25);
out.printin("Hello World");
Converts numbers to decimal string representations
Uses toString to convert objects to strings

Finished

Close input

in.close()
Close output

out.close()
Exist program without close may loose data

File Doesn’t Exist

Get a FileNotFoundException
We need the following code

public static void main(String[] args) throws
FileNotFoundException

Example

import java.io.FileReader;

import java.io.FileNotFoundException;
import java.io.PrintWriter;

import java.util.Scanner;

public class LineNumberer

{
public static void mian(String[] args)

throws FileNotFoundException

{

Scanner console = new Scanner (System.in);

System.out.printin("Input file: ");
String inputFileName = console.next();

System.out.printIin("Output file: ");
String outputFileName = console.next();

Example (cont)

FileReader reader = new FileReader(inputFileName);
Scanner in = new Scanner(reader);

PrintWriter out = new PrintWriter(outputFileName);
int lineNumber = 1;

while (in.hasNextLine())

{
String line = in.nextLine();
out.printIn("/* " + lineNumber + "*/" + line);
lineNumber ++;

}

in.close();

out.close();

File Name Contains Backslashes

Windows file name
C:\homework\input.dat

Must use double backslashes

in = new FileReader("c: \\homework\\input.data”);

Throwing Exceptions

Two main aspects to exception handling
Reporting
Recovery
The point of reporting is often far apart from
the point of recovery

What do we do if we find a problem?

Exception Handling

Flexible mechanism for passing control from
the point of error reporting to a competent
recovery handler.

When you encounter an error condition you
just throw an appropriate exception.

Then what

Look for an appropriate exception class
Java provides many classes

Throwable

[

Error Exception

£

C1 anslot
Supported
Exception

iZlassHot
Found
Exception

IDException

a

— BOFException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

Runtims
Exception

fa

Arithmetic
Exception

ClassCast
Exception

I1l=gal
Argument
Exception

IllegalStats
Exception

IndexOut
OfBounds
Exception

MoSuch
Element
Exception

MullPointer
Exception

e —

e r—

e J—

Mumbe rFormat
Exception

ArrayIndesdOut
OfBounds
Exception

InputMismatch
Exception

Example

public class BankAccount

{

public void withdraw(double amount)

{

if (@amount > balance)

{
lllegal ArgumentException exception = new
lllegalArgumentException("Amount exceeds balance");
throw exception;
}

balance = balance = amount:

Other Options

Instead of

lllegalArgumentException exception = new
lllegalArgumentException("Amount exceeds balance");
throw exception;

Can use

throw new lllegalArgumentException
("Amount exceeds balance”);

Checked and Unchecked Exceptions

Checked exceptions

When you call a method that throws a checked
exception, compiler checks that you don't ignore
it.

You must tell the compiler what to do

Likely to occur at times — no matter how careful
you are

Unchecked Exceptions
Not required to handle
Considered your fault

Throws Clause

Signals the caller that your method may
encounter an exception.
Your method may throw multiple exceptions

Separate by commas
Be aware of the hierarchy of the exceptions.

Throwable

[

Error Exception

£

C1 anslot
Supported
Exception

iZlassHot
Found
Exception

IDException

a

— BOFException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

Runtims
Exception

fa

Arithmetic
Exception

ClassCast
Exception

I1l=gal
Argument
Exception

IllegalStats
Exception

IndexOut
OfBounds
Exception

MoSuch
Element
Exception

MullPointer
Exception

e —

e r—

e J—

Mumbe rFormat
Exception

ArrayIndesdOut
OfBounds
Exception

InputMismatch
Exception

Try and Catch Block

Try Block

One or more statements that may cause an exception.

Put statements that may cause an exception inside the try
block.

try
{
String filename = ..,;
FileReader reader = new FileReader(filename);
Scanner in = new scanner(reader);
String input = in.next();
int value = Integer.pareselnt(input);

Catch

Put the handler (what you want done) inside the
catch.

catch(IOExceptions exception)

{

exception.printStackTrace();
5

catch (NumberFromatException exception)

{

System.out.println(*Input was not a number”)
}

Finally Clause

You need to take some action whether or not
an exception is thrown.

For example close your files.
These go in a finally block

finally
{

out.close();

5

Finally Clause

Once a try block is entered, the statements in
a finally clause are guaranteed to be
executed, whether or not an exception is
thrown.

Designing Your Own Exceptions

You have a condition that is not handled by
the standard java exceptions.
For example, amount > balance

Throw new
InsufficitentFundsException(*withdrawal of *
+ amount + " exceeds balance of " + balance);

@=You need to define the
InsufficientFundsException class

Designing Your Own Exceptions

Checked or Unchecked

Fault of external event — checked

Fault of internal event - unchecked

Exception Class

public class InsufficientFundsException
extends RuntimeException

{

public InsufficientFundsExcetpion()

{
}

public InsufficientFundsException(String message)

{

super(message)

}

