
INHERITANCE

Chapter 10

INHERITANCE

 Mechanism for enhancing existing classes

 You need to implement a new class

 You have an existing class that represents a

more general concept is already available.

 New class can inherit from the existing class.

 Example

 BankAccount

 SavingsAccount

 Most of the methods of bank account apply to savings

account

 You need additional methods.

 In savings account you only specify new methods.

INHERITANCE

 More generic form is super class.

 Class that inherits from super class is subclass.

 One advantage – code reuse

public class SavingsAccount extends BankAccount

{

public void addInterest()

{

double interest = getBalance() *

interestRate / 100;

deposit(interest);

}

private double interestRate;

}

INHERITANCE

 BankAccount will have the methods

 deposit()

 withdraw()

 getBalance()

 SavingsAccount will have the methods

 deposit()

 withdraw()

 getBalance()

 addInterest()

HIERARCHIES

Archosaurs

Thecodonts Pterosaurs Dinosaurs

Saurischians Ornithischians

Crocodilians

Every class extends the Object

class either directly or indirectly

An Inheritance Diagram

RELOOK AT SAVINGSACCOUNT

public class SavingsAccount extends BankAccount

{

public void addInterest()

{

double interest = getBalance() *

interestRate /

100;

deposit(interest);

}

private double interestRate;

}

•Encapsulation: addInterest calls

getBalance rather than updating the

balance field of the superclass (field is

private)

•Note that addInterest calls

getBalance without specifying an implicit

parameter (the calls apply to the same object)

An Introduction to Inheritance

B
ig

 J
a

v
a

b
y
 C

a
y
 H

o
rstm

a
n

n

C
o
p

y
rig

h
t ©

 2
0

0
8

 b
y
 J

o
h

n
 W

ile
y
 &

 S
o
n

s. A
ll

rig
h

ts re
se

rv
e
d

.

SavingsAccount object inherits the balance

instance field from BankAccount, and gains

one additional instance field: interestRate:

Layout of a Subclass Object

CHECK

 If the class Manager extends the class Employee,

which class is the superclass and which is the
subclass?

• Consider a bank that offers its customers the following

account types:

1. Checking account: no interest; small number of

free transactions per month, additional

transactions are charged a small fee

2. Savings account: earns interest that compounds

monthly
• Inheritance hierarchy:

• All bank accounts support the getBalance method

• All bank accounts support the deposit and withdraw

methods, but the implementations differ

• Checking account needs a method deductFees; savings

account needs a method addInterest

Hierarchy of Bank Accounts

• Override method:

•Supply a different implementation of a method
that exists in the superclass

•Must have same signature (same name and same

parameter types)
•If method is applied to an object of the subclass

type, the overriding method is executed

• Inherit method:

•Don't supply a new implementation of a method
that exists in superclass

•Superclass method can be applied to the

subclass objects

• Add method:

•Supply a new method that doesn't exist in the
superclass

•New method can be applied only to subclass

objects

Inheriting Methods

•Can't override fields

• Inherit field: All fields from the superclass

are automatically inherited

•Add field: Supply a new field that doesn't

exist in the superclass

•What if you define a new field with the same

name as a superclass field?

•Each object would have two

instance fields of the same name

•Fields can hold different values

•Legal but extremely undesirable

Inheriting Instance Fields

• Consider deposit method of

CheckingAccount

public void deposit(double amount)

{

transactionCount++;

// now add amount to balance

. . .

}

• Can't just add amount to balance

• balance is a private field of the superclass

• A subclass has no access to private fields of its

superclass

• Subclass must use public interface

Inherited Fields are Private

•Can't just call

deposit(amount)

in deposit method of CheckingAccount

•That is the same as

this.deposit(amount)

•Calls the same method

• Instead, invoke superclass method

super.deposit(amount)

•Now calls deposit method of BankAccount

class

Invoking a Superclass Method

•Complete method:

public void deposit(double amount)

{

transactionCount++;

// Now add amount to balance

super.deposit(amount);

}

Invoking a Superclass Method

SUBCLASS CONSTRUCTOR

 You write a constructor in the subclass

 Call the super class constructor

 Use the word super

 Must be the first statement of the subclass

constructor

• If subclass constructor doesn't call superclass

constructor, default superclass constructor is

used

•Default constructor: constructor with

no parameters

•If all constructors of the superclass

require parameters, then the compiler

reports an error

Subclass Construction

•Ok to convert subclass reference to superclass

reference

SavingsAccount collegeFund = new

SavingsAccount(10);

BankAccount anAccount =

collegeFund;

Object anObject = collegeFund;

•The three object references stored in

collegeFund, anAccount, and

anObject all refer to the same object of type

SavingsAccount

Converting Between Subclass and Superclass

Types

Converting Between Subclass and Superclass

Types

•Superclass references don't know the full story:

anAccount.deposit(1000); // OK

anAccount.addInterest();

// No--not a method of the class

to which anAccount

belongs

•When you convert between a subclass object to
its superclass type:

•The value of the reference stays the same – it is

the memory location of the object

•But, less information is known about the

object

Converting Between Subclass and Superclass

Types

• Why would anyone want to know less about an object?

• Reuse code that knows about the superclass but not the subclass:

public void transfer(double amount, BankAccount other)

{

withdraw(amount);

other.deposit(amount);

}

Can be used to transfer money from any type of

BankAccount

Converting Between Subclass and Superclass Types (cont.)

• Occasionally you need to convert from a superclass

reference

to a subclass reference

BankAccount anAccount = (BankAccount)

anObject;

• This cast is dangerous: if you are wrong, an exception is

thrown

• Solution: use the instanceof operator

• instanceof: tests whether an object belongs to a

particular type

if (anObject instanceof BankAccount)

{

BankAccount anAccount = (BankAccount)

anObject;

. . .

}

Converting Between Subclass and Superclass Types

• In Java, type of a variable doesn't completely

determine type of object to which it refers
BankAccount aBankAccount = new

SavingsAccount(1000); // aBankAccount

holds a reference to a SavingsAccount

• Method calls are determined by type of actual object,

not type of object reference
BankAccount anAccount = new

CheckingAccount();

anAccount.deposit(1000); // Calls

"deposit" from

CheckingAccount

• Compiler needs to check that only legal methods are

invoked Object anObject = new

BankAccount();

anObject.deposit(1000); // Wrong!

Polymorphism

• Polymorphism: ability to refer to objects of multiple types with varying

behavior

• Polymorphism at work:

public void transfer(double amount, BankAccount

other)

{

withdraw(amount); // Shortcut for

this.withdraw(amount)

other.deposit(amount);

}

• Depending on types of amount and other, different versions of

withdraw and deposit are called

Polymorphism

• Java has four levels of controlling access to fields, methods,

and classes:

• public access

o Can be accessed by methods of all classes

• private access

o Can be accessed only by the methods of their own

class

• protected access

• package access

o The default, when no access modifier is given

o Can be accessed by all classes in the same

package

o Good default for classes, but extremely

unfortunate for fields

Access Control

Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no

modifier
Y Y N N

private Y N N N

The following table shows the access to members

permitted by each modifier.

http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html

•All classes defined without an explicit extends clause automatically extend

Object

Object: The Cosmic Superclass

