
Interfaces and

polymorphism

Chapter 9

Interfaces

 Used to express operations common to
more than one purpose.

 Example:

◼ You want to find the maximum gpa of a group
of students.

◼ You want to find the maximum balance of the
bank accounts of a bank.

◼ You use the same operation to find the
maximum.

◼ With what we know, we would have to rewrite
the method for each.

◼ There needs to be a better way.

Using Interfaces for Code Reuse

 Interface types makes code more reusable

 Interface type declares a set of methods
and their signatures.

 An interface type is similar to a class

 Differences
◼ All method in an interface type are abstract

 Name

 Parameter

 Return type

 Don’t’ have an implementation

◼ All methods are automatically public

◼ Does not have instance fields

Using Interfaces for Code Reuse

 In Chap. 6, we created a DataSet to find

the average and maximum of a set of
values (numbers)

 What if we want to find the average and
maximum of a set of BankAccount values?

Using Interfaces for Code Reuse
public class DataSet // Modified for BankAccount objects

{

. . .

public void add(BankAccount x)

{

sum = sum + x.getBalance();

if (count == 0 || maximum.getBalance() < x.getBalance())

maximum = x;

count++;

}

public BankAccount getMaximum()

{

return maximum;

}

private double sum;

private BankAccount maximum;

private int count;

}

Using Interfaces for Code Reuse

 Or suppose we wanted to find the coin
with the highest value among a set of
coins. We would need to modify the
DataSet class again

Using Interfaces for Code Reuse
public class DataSet // Modified for Coin objects

{

. . .

public void add(Coin x)

{

sum = sum + x.getValue();

if (count == 0 || maximum.getValue() < x.getValue())

maximum = x;

count++;

}

public Coin getMaximum()

{

return maximum;

}

private double sum;

private Coin maximum;

private int count;

}

Using Interfaces for Code Reuse

 The mechanics of analyzing the data is the
same in all cases; details of measurement
differ

 Classes could agree on a method
getMeasure that obtains the measure(or

the value) to be used in the analysis

Using Interfaces for Code Reuse

 We can implement a single reusable
DataSet class whose add method looks

like this:

 In this case x can be either a bank
account or it can be a coin or a gpa.

 We need an interface.

◼ We will call it Measureable

◼ It will declare one method (getMeasure)

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

Example

public interface Measurable

{

double getMeasure();

}

Notice:
•Type is interface
•No instance fields
•No implementation

Use

 When we do this we can use the DataSet
class for any class that implements the
Measurable interface

Using Interfaces for Code Reuse

 What is the type of the variable x?
x should refer to any class that has a
getMeasure method

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

Using Interfaces for Code Reuse

 An interface type is used to specify
required operations

 When we use the interface, our class must
have a method or methods that
correspond to each method declared in
the interface.

 Interface declaration lists all methods (and
their signatures) that the interface type
requires

public interface Measurable

{

double getMeasure();

}

How to Implement
Use implements keyword to indicate that a class implements
an interface type

We must put the method in the program that implement the
interface.

A class can implement more than one interface type
Class must define all the methods that are required by all the
interfaces it implements

public class BankAccount implements Measurable

{

public double getMeasure()

{

return balance;

}

// Additional methods and fields

}

UML Diagram of Dataset and

Related Classes

 Interfaces can reduce the coupling
between classes

 UML notation:

◼ Interfaces are tagged with a "stereotype"
indicator «interface»

◼ A dotted arrow with a triangular tip denotes
the "is-a" relationship between a class and an
interface

◼ A dotted line with an open v-shaped arrow tip
denotes the "uses" relationship or dependency

 Note that DataSet is decoupled from
BankAccount and Coin

UML

Generic DataSet for Measureable

Objects

public class DataSet

{

. . .

public void add(Measurable x)

{

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

}

public Measurable getMaximum()

{

return maximum;

}

private double sum;

private Measurable maximum;

private int count;

}

File DataSetTester.java
01: /**

02: This program tests the DataSet class.

03: */

04: public class DataSetTester

05: {

06: public static void main(String[] args)

07: {

08: DataSet bankData = new DataSet();

09:

10: bankData.add(new BankAccount(0));

11: bankData.add(new BankAccount(10000));

12: bankData.add(new BankAccount(2000));

13:

14: System.out.println("Average balance = "

15: + bankData.getAverage());

16: Measurable max = bankData.getMaximum();

17: System.out.println("Highest balance = "

18: + max.getMeasure());

File DataSetTester.java
19:

20: DataSet coinData = new DataSet();

21:

22: coinData.add(new Coin(0.25, "quarter"));

23: coinData.add(new Coin(0.1, "dime"));

24: coinData.add(new Coin(0.05, "nickel"));

25:

26: System.out.println("Average coin value = "

27: + coinData.getAverage());

28: max = coinData.getMaximum();

29: System.out.println("Highest coin value = "

30: + max.getMeasure());

31: }

32: }

Output

Average balance = 4000.0

Highest balance = 10000.0

Average coin value = 0.13333333333333333

Highest coin value = 0.25

Converting Between Class and

Interface Types

 Interfaces are used to express the
commonality between classes

 You can convert from a class type to an
interface type, provided the class
implements the interface

BankAccount account = new BankAccount(10000);

Measurable x = account; // OK

Coin dime = new Coin(0.1, "dime");

Measurable x = dime; // Also OK

Converting Between Class and

Interface Types

 You can not convert between unrelated
types

Measurable x = new Rectangle (5,10,20,30); // illegal

 Because Rectangle doesn't implement
Measurable

 Rectangle can’t implement Measurable

because it is a system class

Casts

 Add coin objects to DataSet

 What can you do with it? It's not of type
Coin

DataSet coinData = new DataSet();

coinData.add(new Coin(0.25, "quarter"));

coinData.add(new Coin(0.1, "dime"));

. . .

Measurable max = coinData.getMaximum(); // Get the largest coin

String name = max.getName(); // ERROR

Continued…

Casts

 You need a cast to convert from an
interface type to a class type

 You know it's a coin, but the compiler
doesn't. Apply a cast:

 If you are wrong and max isn't a coin, the

compiler throws an exception

Coin maxCoin = (Coin) max;

String name = maxCoin.getName();

Casts

 Difference with casting numbers:

◼ When casting number types you agree to the
information loss

◼ When casting object types you agree to that
risk of causing an exception

Polymorphism

 Interface variable holds reference to
object of a class that implements the
interface
Measurable x;

Note that the object to which x refers
doesn't have type Measurable; the type of

the object is some class that implements
the Measurable interface Continued…

x = new BankAccount(10000);

x = new Coin(0.1, "dime");

Polymorphism

 You can call any of the interface methods:

 Which method is called?

double m = x.getMeasure();

Polymorphism

 Depends on the actual object.

 If x refers to a bank account, calls
BankAccount.getMeasure

 If x refers to a coin, calls
Coin.getMeasure

 Polymorphism (many shapes): Behavior
can vary depending on the actual type of
an object

Continued…

Polymorphism

 Called late binding: resolved at runtime

 Different from overloading; overloading is
resolved by the compiler (early binding)

 Remember – overloading is when you
have 2 methods with the same name.
The explicit parameter determines which
method will be used.

Using Interfaces for Callbacks

 Limitations of Measurable interface:

 Can add Measurable interface only to

classes under your control

 Can measure an object in only one way
E.g., cannot analyze a set of savings
accounts both by bank balance and by
interest rate

 Callback mechanism: allows a class to call
back a specific method when it needs
more information

Using Interfaces for Callbacks

 Object is the "lowest common

denominator" of all classes

 In previous DataSet implementation,

responsibility of measuring lies with the
added objects themselves

 Alternative: Hand the object to be
measured to a method:

public interface Measurer

{

double measure(Object anObject);

}

Using Interfaces for Callbacks

 add method asks measurer (and not the

added object) to do the measuring

public void add(Object x)

{

sum = sum + measurer.measure(x);

if (count == 0 || measurer.measure(maximum) < measurer.measure(x))

maximum = x;

count++;

}

Using Interfaces for Callbacks

 You can define measurers to take on any
kind of measurement

public class RectangleMeasurer implements Measurer

{

public double measure(Object anObject)

{

Rectangle aRectangle = (Rectangle) anObject;

double area = aRectangle.getWidth() * aRectangle.getHeight();

return area;

}

}

Using Interfaces for Callbacks

 Must cast from Object to Rectangle

 Pass measurer to data set constructor:

Rectangle aRectangle = (Rectangle) anObject;

Measurer m = new RectangleMeasurer();

DataSet data = new DataSet(m);

data.add(new Rectangle(5, 10, 20, 30));

data.add(new Rectangle(10, 20, 30, 40));

. . .

UML

 Note that the Rectangle class is decoupled
from the Measurer interface

Inner Classes

 Trivial class can be defined inside a
method

public class DataSetTester3

{

public static void main(String[] args)

{

class RectangleMeasurer implements Measurer

{

. . .

}

Measurer m = new RectangleMeasurer();

DataSet data = new DataSet(m); . . .

}

}

Continued…

Inner Classes

 If inner class is defined inside an enclosing
class, but outside its methods, it is
available to all methods of enclosing class

 Compiler turns an inner class into a
regular class file:

DataSetTester1RectangleMeasurer.class

Syntax 11.3: Inner Classes
Declared inside a method

class OuterClassName

{

method signature

{

. . .

class InnerClassName

{

// methods

// fields

}

. . .

}

. . .

}

Declared inside the class

class OuterClassName

{

// methods

// fields

accessSpecifier class

InnerClassName

{

// methods

// fields

}

. . .

}

Continued…

Syntax 11.3: Inner Classes

Example:
public class Tester

{

public static void main(String[] args)

{

class RectangleMeasurer implements Measurer

{

. . .

}

. . .

}

}

Purpose:

To define an inner class whose scope is restricted to a single method or

the methods of a single class

File FileTester3.java

01: import java.awt.Rectangle;

02:

03: /**

04: This program demonstrates the use of a Measurer.

05: */

06: public class DataSetTester3

07: {

08: public static void main(String[] args)

09: {

10: class RectangleMeasurer implements Measurer

11: {

12: public double measure(Object anObject)

13: {

14: Rectangle aRectangle = (Rectangle) anObject;

15: double area

16: = aRectangle.getWidth()

* aRectangle.getHeight();

17: return area;
Continued…

File FileTester3.java
18: }

19: }

20:

21: Measurer m = new RectangleMeasurer();

22:

23: DataSet data = new DataSet(m);

24:

25: data.add(new Rectangle(5, 10, 20, 30));

26: data.add(new Rectangle(10, 20, 30, 40));

27: data.add(new Rectangle(20, 30, 5, 10));

28:

29: System.out.println("Average area = " + data.getAverage());

30: Rectangle max = (Rectangle) data.getMaximum();

31: System.out.println("Maximum area rectangle = " + max);

32: }

33: }

Accessing Surrounding Variables

 Local variables that are accessed by an
inner-class method must be declared as
final

 Inner class can access fields of
surrounding class that belong to the
object that constructed the inner class
object

 An inner class object created inside a
static method can only access static
surrounding fields

