
Interfaces and

polymorphism

Chapter 9

Interfaces

 Used to express operations common to
more than one purpose.

 Example:

◼ You want to find the maximum gpa of a group
of students.

◼ You want to find the maximum balance of the
bank accounts of a bank.

◼ You use the same operation to find the
maximum.

◼ With what we know, we would have to rewrite
the method for each.

◼ There needs to be a better way.

Using Interfaces for Code Reuse

 Interface types makes code more reusable

 Interface type declares a set of methods
and their signatures.

 An interface type is similar to a class

 Differences
◼ All method in an interface type are abstract

 Name

 Parameter

 Return type

 Don’t’ have an implementation

◼ All methods are automatically public

◼ Does not have instance fields

Using Interfaces for Code Reuse

 In Chap. 6, we created a DataSet to find

the average and maximum of a set of
values (numbers)

 What if we want to find the average and
maximum of a set of BankAccount values?

Using Interfaces for Code Reuse
public class DataSet // Modified for BankAccount objects

{

. . .

public void add(BankAccount x)

{

sum = sum + x.getBalance();

if (count == 0 || maximum.getBalance() < x.getBalance())

maximum = x;

count++;

}

public BankAccount getMaximum()

{

return maximum;

}

private double sum;

private BankAccount maximum;

private int count;

}

Using Interfaces for Code Reuse

 Or suppose we wanted to find the coin
with the highest value among a set of
coins. We would need to modify the
DataSet class again

Using Interfaces for Code Reuse
public class DataSet // Modified for Coin objects

{

. . .

public void add(Coin x)

{

sum = sum + x.getValue();

if (count == 0 || maximum.getValue() < x.getValue())

maximum = x;

count++;

}

public Coin getMaximum()

{

return maximum;

}

private double sum;

private Coin maximum;

private int count;

}

Using Interfaces for Code Reuse

 The mechanics of analyzing the data is the
same in all cases; details of measurement
differ

 Classes could agree on a method
getMeasure that obtains the measure(or

the value) to be used in the analysis

Using Interfaces for Code Reuse

 We can implement a single reusable
DataSet class whose add method looks

like this:

 In this case x can be either a bank
account or it can be a coin or a gpa.

 We need an interface.

◼ We will call it Measureable

◼ It will declare one method (getMeasure)

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

Example

public interface Measurable

{

double getMeasure();

}

Notice:
•Type is interface
•No instance fields
•No implementation

Use

 When we do this we can use the DataSet
class for any class that implements the
Measurable interface

Using Interfaces for Code Reuse

 What is the type of the variable x?
x should refer to any class that has a
getMeasure method

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

Using Interfaces for Code Reuse

 An interface type is used to specify
required operations

 When we use the interface, our class must
have a method or methods that
correspond to each method declared in
the interface.

 Interface declaration lists all methods (and
their signatures) that the interface type
requires

public interface Measurable

{

double getMeasure();

}

How to Implement
Use implements keyword to indicate that a class implements
an interface type

We must put the method in the program that implement the
interface.

A class can implement more than one interface type
Class must define all the methods that are required by all the
interfaces it implements

public class BankAccount implements Measurable

{

public double getMeasure()

{

return balance;

}

// Additional methods and fields

}

UML Diagram of Dataset and

Related Classes

 Interfaces can reduce the coupling
between classes

 UML notation:

◼ Interfaces are tagged with a "stereotype"
indicator «interface»

◼ A dotted arrow with a triangular tip denotes
the "is-a" relationship between a class and an
interface

◼ A dotted line with an open v-shaped arrow tip
denotes the "uses" relationship or dependency

 Note that DataSet is decoupled from
BankAccount and Coin

UML

Generic DataSet for Measureable

Objects

public class DataSet

{

. . .

public void add(Measurable x)

{

sum = sum + x.getMeasure();

if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;

count++;

}

public Measurable getMaximum()

{

return maximum;

}

private double sum;

private Measurable maximum;

private int count;

}

File DataSetTester.java
01: /**

02: This program tests the DataSet class.

03: */

04: public class DataSetTester

05: {

06: public static void main(String[] args)

07: {

08: DataSet bankData = new DataSet();

09:

10: bankData.add(new BankAccount(0));

11: bankData.add(new BankAccount(10000));

12: bankData.add(new BankAccount(2000));

13:

14: System.out.println("Average balance = "

15: + bankData.getAverage());

16: Measurable max = bankData.getMaximum();

17: System.out.println("Highest balance = "

18: + max.getMeasure());

File DataSetTester.java
19:

20: DataSet coinData = new DataSet();

21:

22: coinData.add(new Coin(0.25, "quarter"));

23: coinData.add(new Coin(0.1, "dime"));

24: coinData.add(new Coin(0.05, "nickel"));

25:

26: System.out.println("Average coin value = "

27: + coinData.getAverage());

28: max = coinData.getMaximum();

29: System.out.println("Highest coin value = "

30: + max.getMeasure());

31: }

32: }

Output

Average balance = 4000.0

Highest balance = 10000.0

Average coin value = 0.13333333333333333

Highest coin value = 0.25

Converting Between Class and

Interface Types

 Interfaces are used to express the
commonality between classes

 You can convert from a class type to an
interface type, provided the class
implements the interface

BankAccount account = new BankAccount(10000);

Measurable x = account; // OK

Coin dime = new Coin(0.1, "dime");

Measurable x = dime; // Also OK

Converting Between Class and

Interface Types

 You can not convert between unrelated
types

Measurable x = new Rectangle (5,10,20,30); // illegal

 Because Rectangle doesn't implement
Measurable

 Rectangle can’t implement Measurable

because it is a system class

Casts

 Add coin objects to DataSet

 What can you do with it? It's not of type
Coin

DataSet coinData = new DataSet();

coinData.add(new Coin(0.25, "quarter"));

coinData.add(new Coin(0.1, "dime"));

. . .

Measurable max = coinData.getMaximum(); // Get the largest coin

String name = max.getName(); // ERROR

Continued…

Casts

 You need a cast to convert from an
interface type to a class type

 You know it's a coin, but the compiler
doesn't. Apply a cast:

 If you are wrong and max isn't a coin, the

compiler throws an exception

Coin maxCoin = (Coin) max;

String name = maxCoin.getName();

Casts

 Difference with casting numbers:

◼ When casting number types you agree to the
information loss

◼ When casting object types you agree to that
risk of causing an exception

Polymorphism

 Interface variable holds reference to
object of a class that implements the
interface
Measurable x;

Note that the object to which x refers
doesn't have type Measurable; the type of

the object is some class that implements
the Measurable interface Continued…

x = new BankAccount(10000);

x = new Coin(0.1, "dime");

Polymorphism

 You can call any of the interface methods:

 Which method is called?

double m = x.getMeasure();

Polymorphism

 Depends on the actual object.

 If x refers to a bank account, calls
BankAccount.getMeasure

 If x refers to a coin, calls
Coin.getMeasure

 Polymorphism (many shapes): Behavior
can vary depending on the actual type of
an object

Continued…

Polymorphism

 Called late binding: resolved at runtime

 Different from overloading; overloading is
resolved by the compiler (early binding)

 Remember – overloading is when you
have 2 methods with the same name.
The explicit parameter determines which
method will be used.

Using Interfaces for Callbacks

 Limitations of Measurable interface:

 Can add Measurable interface only to

classes under your control

 Can measure an object in only one way
E.g., cannot analyze a set of savings
accounts both by bank balance and by
interest rate

 Callback mechanism: allows a class to call
back a specific method when it needs
more information

Using Interfaces for Callbacks

 Object is the "lowest common

denominator" of all classes

 In previous DataSet implementation,

responsibility of measuring lies with the
added objects themselves

 Alternative: Hand the object to be
measured to a method:

public interface Measurer

{

double measure(Object anObject);

}

Using Interfaces for Callbacks

 add method asks measurer (and not the

added object) to do the measuring

public void add(Object x)

{

sum = sum + measurer.measure(x);

if (count == 0 || measurer.measure(maximum) < measurer.measure(x))

maximum = x;

count++;

}

Using Interfaces for Callbacks

 You can define measurers to take on any
kind of measurement

public class RectangleMeasurer implements Measurer

{

public double measure(Object anObject)

{

Rectangle aRectangle = (Rectangle) anObject;

double area = aRectangle.getWidth() * aRectangle.getHeight();

return area;

}

}

Using Interfaces for Callbacks

 Must cast from Object to Rectangle

 Pass measurer to data set constructor:

Rectangle aRectangle = (Rectangle) anObject;

Measurer m = new RectangleMeasurer();

DataSet data = new DataSet(m);

data.add(new Rectangle(5, 10, 20, 30));

data.add(new Rectangle(10, 20, 30, 40));

. . .

UML

 Note that the Rectangle class is decoupled
from the Measurer interface

Inner Classes

 Trivial class can be defined inside a
method

public class DataSetTester3

{

public static void main(String[] args)

{

class RectangleMeasurer implements Measurer

{

. . .

}

Measurer m = new RectangleMeasurer();

DataSet data = new DataSet(m); . . .

}

}

Continued…

Inner Classes

 If inner class is defined inside an enclosing
class, but outside its methods, it is
available to all methods of enclosing class

 Compiler turns an inner class into a
regular class file:

DataSetTester1RectangleMeasurer.class

Syntax 11.3: Inner Classes
Declared inside a method

class OuterClassName

{

method signature

{

. . .

class InnerClassName

{

// methods

// fields

}

. . .

}

. . .

}

Declared inside the class

class OuterClassName

{

// methods

// fields

accessSpecifier class

InnerClassName

{

// methods

// fields

}

. . .

}

Continued…

Syntax 11.3: Inner Classes

Example:
public class Tester

{

public static void main(String[] args)

{

class RectangleMeasurer implements Measurer

{

. . .

}

. . .

}

}

Purpose:

To define an inner class whose scope is restricted to a single method or

the methods of a single class

File FileTester3.java

01: import java.awt.Rectangle;

02:

03: /**

04: This program demonstrates the use of a Measurer.

05: */

06: public class DataSetTester3

07: {

08: public static void main(String[] args)

09: {

10: class RectangleMeasurer implements Measurer

11: {

12: public double measure(Object anObject)

13: {

14: Rectangle aRectangle = (Rectangle) anObject;

15: double area

16: = aRectangle.getWidth()

* aRectangle.getHeight();

17: return area;
Continued…

File FileTester3.java
18: }

19: }

20:

21: Measurer m = new RectangleMeasurer();

22:

23: DataSet data = new DataSet(m);

24:

25: data.add(new Rectangle(5, 10, 20, 30));

26: data.add(new Rectangle(10, 20, 30, 40));

27: data.add(new Rectangle(20, 30, 5, 10));

28:

29: System.out.println("Average area = " + data.getAverage());

30: Rectangle max = (Rectangle) data.getMaximum();

31: System.out.println("Maximum area rectangle = " + max);

32: }

33: }

Accessing Surrounding Variables

 Local variables that are accessed by an
inner-class method must be declared as
final

 Inner class can access fields of
surrounding class that belong to the
object that constructed the inner class
object

 An inner class object created inside a
static method can only access static
surrounding fields

