
ARRAYS AND ARRAYLISTS

Chapter 7

Array

 Sequence of values of the same type

 Primitive types

 Objects

 Create an Array

 double[] values = new double[10]

 int[] values = {2,4,5,6,7,8,9}

 BankAccount[] accounts=new BankAccount[10]

Definitions

 Length of array

 Number of declared elements

 Used or unused

 Element type

 Type of the array

 Index

 Access to the array

 Integer

Differences Between Java and Visual Logic

 Visual Logic

 Do not have to define type of array

 Use () to surround index number

 Java

 Have to define type of array

 Must use the new operator when creating the array

 Use [] to surround index number

Default Initialization of Array Elements

 Array of numbers (int or double) = 0

 Array of boolean = false

 Array of objects = null

Arrays and Memory

0

0

0

0

values

double[]

Add Value

0

10.0

0

0

values

double[]

Values[1] = 10.0

More Definitions

 Index values – range from 0 to length-1

 Bounds error

 Accessing a non existent elements

 Program terminate

 values.length() – method to get the length of the

array named values

 Parallel arrays

 2 or more arrays used to describe one thing

Parallel Arrays

 Student name

 Student age

 Student gpa

 String[] name = new String[10]

 int [] age = new int[10]

 double [] gpa = new double[10]

 Avoid change to array of object

Major Problem With Array

 Length is fixed

 Array can develop “holes in delete” or “add”

 Won’t know if array is full

Array List

 Allows you to collect objects just like arrays.

 Can grow and shrink as needed

 Has methods for inserting and deleting objects.

 Will not work on primitive types

ArrayList / Generic Class

 ArrayList<String> names = new

ArrayList<String>();

 Notice the type of objects are in <>.

 These are called generics.

 Generics are used when you want anytype in its

place.

 Will study later. Maybe next semester.

A

names.add(“Kathy”); Add elements to end

System.out.println(names) Prints [Kathy]

names.add(1,”Bob”) Inserts Bob before Kathy

names.remove(0) removes first element - Bob

names.set(0,”Bill”) removes Kathy

puts Bill in Kathy’s place

String name = names.get(0) gets the first element

String name =

namew.get(names.size()-1)

gets last element

How To Use Array Lists

Wrapper Classes

 The object class for a
corresponding primitive
type

 Can convert from
primitive to wrapper

 Can store Wrapper in
ArrayList

 Convert int to Integer

 Use Array List of type
Integer

Primitive Wrapper

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

Converting From Primitive to Wrapper

 Converting from primitive to Wrapper Class is
called “auto-boxing”

 Double d = 29.95

 Converting from Wrapper Class to primitive is
called “auto-unboxing”

 double dd = d;

 Can still do arithmetic

 Double dPlus = d +1;

 d was unboxed. One was added. The result was boxed
and placed in dPlus.

Enhanced for Loop

 Shortcut

 Traverses all elements of a collection

double [] values = ………….;

double sum = 0;

for (double element : values)

{

sum = sum+ element;

}

 Loop variable contains an element not index.

Partially Filled Array

 arrayName.length() gives number of elements

 Does not give how many are used

 Keep a companion value to track how many

elements are used.

Removing an Element

 Remove the 4th element of eight

 Array List

 Use the remove method

 Necessary shifts will take place 5th will move to 4th, and

previous 6th to 5th etc.

 You do nothing

 Array

 You have to do all the necessary shifts

Inserting An Element

 Array List

 If order doesn’t matter simply use

◼ arrayListName.add(element)

 If order does matter use

◼ arrayListName.add(position, element)

 Array

 If order doesn’t matter

◼ use index of next available opening

 If order does matter

◼ must shift to create opening

Copying an Array

 An array variable stores a reference to the array.

 Copying yields a second reference to the same

array.

 to create a true copy use copyOf

Copying and Growing an Array

int[] value = new int[10];

int valueSize = 0;

while (in.hasNextDouble())

{

if (valuesSize == values.length)

values =
Arrays.copyOf(values,2*values.length);

value[valueSize] = in.nextDouble();

valuesSize++;

}

Multiple-Dimensional Arrays

 2 Dimensions

 String[][] board = new String[rows, columns]

 rows and columns = some values

 3 Dimensions

 String[][][] board = new String[2][3][4]

