
ARRAYS AND ARRAYLISTS

Chapter 7

Array

 Sequence of values of the same type

 Primitive types

 Objects

 Create an Array

 double[] values = new double[10]

 int[] values = {2,4,5,6,7,8,9}

 BankAccount[] accounts=new BankAccount[10]

Definitions

 Length of array

 Number of declared elements

 Used or unused

 Element type

 Type of the array

 Index

 Access to the array

 Integer

Differences Between Java and Visual Logic

 Visual Logic

 Do not have to define type of array

 Use () to surround index number

 Java

 Have to define type of array

 Must use the new operator when creating the array

 Use [] to surround index number

Default Initialization of Array Elements

 Array of numbers (int or double) = 0

 Array of boolean = false

 Array of objects = null

Arrays and Memory

0

0

0

0

values

double[]

Add Value

0

10.0

0

0

values

double[]

Values[1] = 10.0

More Definitions

 Index values – range from 0 to length-1

 Bounds error

 Accessing a non existent elements

 Program terminate

 values.length() – method to get the length of the

array named values

 Parallel arrays

 2 or more arrays used to describe one thing

Parallel Arrays

 Student name

 Student age

 Student gpa

 String[] name = new String[10]

 int [] age = new int[10]

 double [] gpa = new double[10]

 Avoid change to array of object

Major Problem With Array

 Length is fixed

 Array can develop “holes in delete” or “add”

 Won’t know if array is full

Array List

 Allows you to collect objects just like arrays.

 Can grow and shrink as needed

 Has methods for inserting and deleting objects.

 Will not work on primitive types

ArrayList / Generic Class

 ArrayList<String> names = new

ArrayList<String>();

 Notice the type of objects are in <>.

 These are called generics.

 Generics are used when you want anytype in its

place.

 Will study later. Maybe next semester.

A

names.add(“Kathy”); Add elements to end

System.out.println(names) Prints [Kathy]

names.add(1,”Bob”) Inserts Bob before Kathy

names.remove(0) removes first element - Bob

names.set(0,”Bill”) removes Kathy

puts Bill in Kathy’s place

String name = names.get(0) gets the first element

String name =

namew.get(names.size()-1)

gets last element

How To Use Array Lists

Wrapper Classes

 The object class for a
corresponding primitive
type

 Can convert from
primitive to wrapper

 Can store Wrapper in
ArrayList

 Convert int to Integer

 Use Array List of type
Integer

Primitive Wrapper

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

Converting From Primitive to Wrapper

 Converting from primitive to Wrapper Class is
called “auto-boxing”

 Double d = 29.95

 Converting from Wrapper Class to primitive is
called “auto-unboxing”

 double dd = d;

 Can still do arithmetic

 Double dPlus = d +1;

 d was unboxed. One was added. The result was boxed
and placed in dPlus.

Enhanced for Loop

 Shortcut

 Traverses all elements of a collection

double [] values = ………….;

double sum = 0;

for (double element : values)

{

sum = sum+ element;

}

 Loop variable contains an element not index.

Partially Filled Array

 arrayName.length() gives number of elements

 Does not give how many are used

 Keep a companion value to track how many

elements are used.

Removing an Element

 Remove the 4th element of eight

 Array List

 Use the remove method

 Necessary shifts will take place 5th will move to 4th, and

previous 6th to 5th etc.

 You do nothing

 Array

 You have to do all the necessary shifts

Inserting An Element

 Array List

 If order doesn’t matter simply use

◼ arrayListName.add(element)

 If order does matter use

◼ arrayListName.add(position, element)

 Array

 If order doesn’t matter

◼ use index of next available opening

 If order does matter

◼ must shift to create opening

Copying an Array

 An array variable stores a reference to the array.

 Copying yields a second reference to the same

array.

 to create a true copy use copyOf

Copying and Growing an Array

int[] value = new int[10];

int valueSize = 0;

while (in.hasNextDouble())

{

if (valuesSize == values.length)

values =
Arrays.copyOf(values,2*values.length);

value[valueSize] = in.nextDouble();

valuesSize++;

}

Multiple-Dimensional Arrays

 2 Dimensions

 String[][] board = new String[rows, columns]

 rows and columns = some values

 3 Dimensions

 String[][][] board = new String[2][3][4]

