Iteration

While Loops

Executes a block of code repeatedly
A condition controls how often the loop is executed

while (condition)

statement

Most commonly, the statement is a block statement (set of
statements delimited by { })

Calculating the Growth of an

Investment
]
Invest $10,000, 5% interest, compounded annually
Year Balance
0 $10,000
1 $10,500
2 $11,025
3 $11,576.25
4 $12,155.06
5 $12,762.82

Calculating the Growth of an

Investment SVisual Logicz
-

* When has the bank account reached a particular balance?

ears =10

-

balance = 10000

True

. balance < targetBalance l

years = years+1 I
balance = balance +
balance * rate /100

w

Calculating the Growth of an

Investment
e

* When has the bank account reached a particular balance?

int years;

while (balance < targetBalance)

{
years++;
double interest = balance * rate / 100;
balance = balance + interest;

Investment.java
—

01: /**

02: A class to monitor the growth of an investment that
03: accumulates interest at a fixed annual rate.

04: */

05: public class Investment

06: {

07: /**

08: Constructs an Investment object from a starting balance and
09: interest rate.

10: @param aBalance the starting balance

11: @param aRate the interest rate in percent

12: */

13: public Investment (double aBalance, double aRate)
14: {

15: balance = aBalance;

16: rate = aRate;

17: years = 0;

18: }

19:

20:
21:
22 :
23:
24 :
25:
26:
27 :
28 :
29:
30:
31:
32:
33:
34:

Investment.java (cont.)

public void waitForBalance (double targetBalance)

{

/**

*/

while

{

Keeps accumulating interest until a target balance has

been reached.

dparam targetBalance the desired balance

years++;

(balance < targetBalance)

double interest = balance * rate / 100;

balance

balance + interest;

35: /**

36: Gets the current investment balance.
37: @return the current balance

38: */

39: public double getBalance ()

40: {

41 : return balance;

42 }

43:

44 /**

45: Gets the number of years this investment has accumulated
46: interest.

47 @return the number of years since the start of the investment
48: */

49: public int getYears()

50: {

51: return years;

52: }

53:

54: private double balance;

55: private double rate;

56: private int years;

57: '}

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

/**
This program computes how long it takes for an investment
to double.
*/
public class InvestmentRunner
{
public static void main(String[] args)
{
final double INITIAL BALANCE = 10000;
final double RATE = 5;
Investment invest = new Investment (INITIAL BALANCE, RATE);
invest.waitForBalance (2 * INITIAL BALANCE) ;
int years = invest.getYears|();
System.out.println ("The investment doubled after "
+ years + " years");

S
Output:

The 1nvestment doubled after 15 years

S
What would happen if raTE was set to 0 in the main method

of the InvestmentRunner program?

Common Error: Infinite Loops
]

e 1nt years = 0;
while (years < 20)
{

double interest = balance * rate / 100;
balance = balance + interest;
}
e 1nt years = 20;

while (years > 0)

{
vears++; // Oops, should have been years-
double interest = balance * rate / 100;
balance = balance + interest;

« Loops run forever — must kill program

Common Error: Off-by-One Errors
—

e 1nt years = 0;
while (balance < 2 * initialBalance)

{

years++;
double interest = balance * rate / 100;
balance = balance + interest;

}

System.out.println ("The i1nvestment reached the target
after " + years + " years.");

Should years startat 0 or 17

Should the test be < or <=?

* Look at a scenario with simple values:
Initial balance: $100
Interest rate: 50%
after year 1, the balance is $150
after year 2 it is $225, or over $200
so the investment doubled after 2 years
the loop executed two times, incrementing years each time
Therefore: years must start at o, not at 1.

* Interest rate: 100%
after one year: balance IS2 * initialBalance

loop should stop
Therefore: must use <

» Think, don't compile and try at random

do Loops

» Executes loop body at least once:
do
Statement

while (condition);

« Example: Validate input
double wvalue;

do
{

System.out.print ("Please enter a positive number: ");
value = 1n.nextDouble () ;

}

while (value <= 0);

Continued

do Loops (cont.)

« Alternative:

boolean done = false;

while (!done)

{
System.out.print ("Please enter a positive number: ");
value = 1n.nextDouble() ;

if (value > 0) done = true;

balance = 10000 I

years
1ton

balance = balace + balance
* rate /100

e for (initialization; condition; update)

statement

« Example:
for (int 1 = 1; 1 <= n; 1i++)
{

double interest = balance * rate / 100;
balance = balance + interest;

}

« Equivalent to
initialization;
while (condition)
{ statement;

update; }
Continued

* Other examples:
for (years = n; years > 0; years—--)
for (x = -10; x <= 10; x = x + 0.5)

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
20:
21:
22:

/**

*/

A class to monitor the growth of an investment that
accumulates interest at a fixed annual rate

public class Investment

{

/**

*/

Constructs an Investment object from a starting balance and
interest rate.

dparam aBalance the starting balance

@param aRate the interest rate in percent

public Investment (double aBalance, double aRate)

{

}
/**

balance = aBalance;
rate = aRate;
years = 0;

Keeps accumulating interest until a target balance has
been reached.

23:
24 :
26:
27 :
28 :
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44

dparam targetBalance the desired balance

(balance < targetBalance)

years++;
double interest
balance

balance * rate / 100;
balance + interest;

Keeps accumulating interest for a given number of years.
@param n the number of years

public void waitYears(int n)
(int 1

balance * rate / 100;
+ interest;

double interest

balance balance

45
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:

/**

*/

}

years = years + n;

Gets the current investment balance.
@return the current balance

public double getBalance ()

{

/*k*k

*/

return balance;

Gets the number of years this investment has accumulated
interest.
@dreturn the number of years since the start of the investment

public int getYears ()

{

return years;

67:

68: private double balance;
69: private double rate;
70: private int years;

71: }

01: /=**

02: This program computes how much an investment grows in

03: a given number of years.

04: ~*/

05: public class InvestmentRunner

06: {

07: public static void main(String[] args)

08: {

09: final double INITIAL BALANCE = 10000;

10: final double RATE = 5;

11: final int YEARS = 20;

12: Investment invest = new Investment (INITIAL BALANCE, RATE);
13: invest.waitYears (YEARS) ;

14: double balance = invest.getBalance()

15: System.out.printf ("The balance after %d years is %.2f\n",
16: YEARS, balance);

17: }

18: }

Output:

The balance after 20 years 1s 26532.98

Common Error
I e

sum = 0;
for (int i=0; i<=10; i++);

sum=sum-+1,;
System.out.printin(sum);

What will be printed?

Common Error in Visual Logic

e e

5"'“:5"'“*1' sum=sum+1|

— =
Output: Output:
sum§ sum§

w

Correct Error

Loop Variable Scope

Scope extends to the end of the loop
Variable is no longer defined after the loop
If you use after the loop, you must redefine it.
Loops can be nested

Use different variables with each loop

Example
S

for (i=1;i<=10;i++)

{

for (j=1;j<=10;j++)
{
System.out.print(i);
System.out.println(j);
}

}

System.out.println(i + “ * + j);

Example
S
inti= 100;

int j = 200;
for (i=1;i<=3;i++)

{

for (j=1;j<=3;j++)
{
System.out.print(i);
System.out.println(j);
}

}

System.out.println(i + “ * + j);

Nested Loop

int sum=0;
for (i=0;i<=3;i++)
{
for (j=1;j<=8;j++)
{
sum=i+j;
System.out.println(sum);

Sentinel Value
]

-
Input: input /

(input <> "q") and (input . True

< "Q") / |

-
Qutput:
"You have entered: " &
input
§

-
Input: input /

Please type a value for INPUT:10 H
You have entered: 10

Please type a value for INPUT:20
You have entered: 20

Please type a value for INPUT:"q"
Bye

Sentinel Value
]

System.out.print("Enter value, Q to quit: “);
Scanner in = new Scanner (System.in);
String input = in.next();
while (! input.equalsignoreCase("Q"))
{
double x = Double.parseDouble(input);
System.out.println("You have entered " + x); - — —
System.out.print("Enter value, Q to quit:); & BlueJ: Terminal Wind... | /|23

. . Options
input = in.next(); |

} Enter value, O to quit: 10

>

You hewve entered 10.0

System.out.print("Bye"); Enter value, O to quit:

You hawve entered 2.0

%)

Enter value, O to guit: 5
You have entered 5.0
Enter wvalue, ¢ to guit: g
Bye

< | m (>

Loop and Half

e Sometimes termination condition of a loop can only be
evaluated in the middle of the loop

« Then, introduce a boolean variable to control the loop:
boolean done = false;
while (!done)
{
Print prompt
String 1nput = read input;
1f (end of input indicated)
done = true;
else

{

Process 1input

}

DataAnalyzer.java
T

0l: import java.util.Scanner;

02:

03: /**

04: This program computes the average and maximum of a set
05: of input values.

06: */

07: public class DataAnalyzer

08: {

09: public static void main (String[] args)

10: {

11: Scanner in = new Scanner (System.in);

12: DataSet data = new DataSet();

13:

14: boolean done = false;

15: while (!done)

16: {

17: System.out.print ("Enter value, Q to quit: ");
18: String input = in.next();

19: if (input.equalsIgnoreCase("Q"))

20: done = true; Continued

21: else

22: {

23: double x = Double.parseDouble (input) ;

24: data.add (x) ;

25: }

26: }

27 :

28: System.out.println ("Average = " + data.getAverage());
29: System.out.println ("Maximum = " + data.getMaximum()) ;
30: }

31: }

01: /*x*

02: Computes the average of a set of data wvalues.
03: */

04: public class DataSet

05: {

06: /**

07: Constructs an empty data set.

08: */

09: public DataSet ()

10: {

11: sum = 0;

12: count = 0;

13: maximum = O;

14: }

15:

l6: /**

17: Adds a data value to the data set

132 y @param x a data value Continued
20: public void add(double x)

21: {

22:
23:
24 :
25:
26:
27 :
28 :
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

}

/**

*/

sum = sum + X;
if (count == | | maximum < X) maximum = X;
count++;

Gets the average of the added data.
dreturn the average or 0 1f no data has been added

public double getAverage ()

{

}

/**

*/

if (count == 0) return 0;
else return sum / count;

Gets the largest of the added data.
@return the maximum or 0 i1f no data has been added

Continued

41 .

public double getMaximum ()

42 : {

43: return maximum;

44: }

45:

46: private double sum;

47 : private double maximum;
48: private int count;

49: }

Output:

Enter value, Q to quit: 10
Enter value, Q to quit: O
Enter value, Q to quit: -1
Enter value, Q to quit: Q

Average = 3.0
Maximum = 10.0

Random Numbers and Simulations

 In a simulation, you repeatedly generate random numbers and
use them to simulate an activity

« Random number generator

Random generator = new Random(); int n =
generator.nextInt(a); // 0 < = n < a double x =
generator.nextDouble(); // 0 <= x < 1

e Throw die (random number between 1 and 6)

int d = 1 + generator.nextInt (6);

Die.java
S =

0l: import java.util.Random;

02:

03: /**

04: This class models a die that, when cast, lands on a random
05: face.

06: */

07: public class Die

08: {

09: /*x*

10: Constructs a die with a given number of sides.

11: @param s the number of sides, e.g. 6 for a normal die
12: */

13: public Die(int s)

14: {

15: sides = s;

l6: generator = new Random() ;

17: }

18:

Continued

19: /**

20: Simulates a throw of the die
21: dreturn the face of the die
22 */

23: public int cast()

24 {

25: return 1 + generator.nextInt (sides);
26: }

27 :

28: private Random generator;

29: private int sides;

30: }

01: /**

02: This program simulates casting a die ten times.
03: */

04: public class DieSimulator

05: {

06: public static void main (String[] args)
07: {

08: Die d = new Die(6);

09: final int TRIES = 10;

10: for (int 1 = 1; 1 <= TRIES; i++)
11: {

12: int n = d.cast();

13: System.out.print(n + " ");

14: }

15: System.out.println();

16: }

17: }

DieSimulator.java (cont.)

Output:
6563263441

Second Run:
3221653412

