
Chapter 6

Iteration

Executes a block of code repeatedly

A condition controls how often the loop is executed

while (condition)

statement

Most commonly, the statement is a block statement (set of
statements delimited by { })

While Loops

Year Balance

0 $10,000

1 $10,500

2 $11,025

3 $11,576.25

4 $12,155.06

5 $12,762.82

Invest $10,000, 5% interest, compounded annually

Calculating the Growth of an

Investment

• When has the bank account reached a particular balance?

Calculating the Growth of an

Investment (Visual Logic)

• When has the bank account reached a particular balance?

int years;

while (balance < targetBalance)

{

years++;

double interest = balance * rate / 100;

balance = balance + interest;

}

Calculating the Growth of an

Investment

01: /**

02: A class to monitor the growth of an investment that

03: accumulates interest at a fixed annual rate.

04: */

05: public class Investment

06: {

07: /**

08: Constructs an Investment object from a starting balance and

09: interest rate.

10: @param aBalance the starting balance

11: @param aRate the interest rate in percent

12: */

13: public Investment(double aBalance, double aRate)

14: {

15: balance = aBalance;

16: rate = aRate;

17: years = 0;

18: }

19:

Investment.java

20: /**

21: Keeps accumulating interest until a target balance has

22: been reached.

23: @param targetBalance the desired balance

24: */

25: public void waitForBalance(double targetBalance)

26: {

27: while (balance < targetBalance)

28: {

29: years++;

30: double interest = balance * rate / 100;

31: balance = balance + interest;

32: }

33: }

34:

Investment.java (cont.)

35: /**

36: Gets the current investment balance.

37: @return the current balance

38: */

39: public double getBalance()

40: {

41: return balance;

42: }

43:

44: /**

45: Gets the number of years this investment has accumulated

46: interest.

47: @return the number of years since the start of the investment

48: */

49: public int getYears()

50: {

51: return years;

52: }

53:

54: private double balance;

55: private double rate;

56: private int years;

57: }

Investment.java (cont.)

01: /**

02: This program computes how long it takes for an investment

03: to double.

04: */

05: public class InvestmentRunner

06: {

07: public static void main(String[] args)

08: {

09: final double INITIAL_BALANCE = 10000;

10: final double RATE = 5;

11: Investment invest = new Investment(INITIAL_BALANCE, RATE);

12: invest.waitForBalance(2 * INITIAL_BALANCE);

13: int years = invest.getYears();

14: System.out.println("The investment doubled after "

15: + years + " years");

16: }

17: }

InvestmentRunner.java

Output:
The investment doubled after 15 years

InvestmentRunner.java (cont.)

What would happen if RATE was set to 0 in the main method

of the InvestmentRunner program?

Self Check

• int years = 0;

while (years < 20)

{

double interest = balance * rate / 100;

balance = balance + interest;

}

• int years = 20;

while (years > 0)

{

years++; // Oops, should have been years–

double interest = balance * rate / 100;

balance = balance + interest;

}

• Loops run forever – must kill program

Common Error: Infinite Loops

• int years = 0;

while (balance < 2 * initialBalance)

{

years++;

double interest = balance * rate / 100;

balance = balance + interest;

}

System.out.println("The investment reached the target

after " + years + " years.");

Should years start at 0 or 1?

Should the test be < or <=?

Common Error: Off-by-One Errors

• Look at a scenario with simple values:
initial balance: $100

interest rate: 50%

after year 1, the balance is $150

after year 2 it is $225, or over $200

so the investment doubled after 2 years
the loop executed two times, incrementing years each time

Therefore: years must start at 0, not at 1.

• interest rate: 100%
after one year: balance is 2 * initialBalance

loop should stop

Therefore: must use <

• Think, don't compile and try at random

Avoiding Off-by-One Error

• Executes loop body at least once:
do

statement

while (condition);

• Example: Validate input
double value;

do

{

System.out.print("Please enter a positive number: ");

value = in.nextDouble();

}

while (value <= 0);

Continued

do Loops

• Alternative:
boolean done = false;

while (!done)

{

System.out.print("Please enter a positive number: ");

value = in.nextDouble();

if (value > 0) done = true;

}

do Loops (cont.)

for Loops

• for (initialization; condition; update)

statement

• Example:
for (int i = 1; i <= n; i++)

{

double interest = balance * rate / 100;

balance = balance + interest;

}

• Equivalent to
initialization;

while (condition)

{ statement;

update; }

Continued

for Loops (cont.)

• Other examples:
for (years = n; years > 0; years--) . . .

for (x = -10; x <= 10; x = x + 0.5) . . .

for Loops (cont.)

01: /**

02: A class to monitor the growth of an investment that

03: accumulates interest at a fixed annual rate

04: */

05: public class Investment

06: {

07: /**

08: Constructs an Investment object from a starting balance and

09: interest rate.

10: @param aBalance the starting balance

11: @param aRate the interest rate in percent

12: */

13: public Investment(double aBalance, double aRate)

14: {

15: balance = aBalance;

16: rate = aRate;

17: years = 0;

18: }

20: /**

21: Keeps accumulating interest until a target balance has

22: been reached.

Investment.java (cont.)

23: @param targetBalance the desired balance

24: */

26: {

27: while (balance < targetBalance)

28: {

29: years++;

30: double interest = balance * rate / 100;

31: balance = balance + interest;

32: }

33: }

34:

35: /**

36: Keeps accumulating interest for a given number of years.

37: @param n the number of years

38: */

39: public void waitYears(int n)

40: {

41: for (int i = 1; i <= n; i++)

42: {

43: double interest = balance * rate / 100;

44: balance = balance + interest;

Investment.java (cont.)

45: }

46: years = years + n;

47: }

48:

49: /**

50: Gets the current investment balance.

51: @return the current balance

52: */

53: public double getBalance()

54: {

55: return balance;

56: }

57:

58: /**

59: Gets the number of years this investment has accumulated

60: interest.

61: @return the number of years since the start of the investment

62: */

63: public int getYears()

64: {

65: return years;

66: }

Investment.java (cont.)

67:

68: private double balance;

69: private double rate;

70: private int years;

71: }

Investment.java (cont.)

01: /**

02: This program computes how much an investment grows in

03: a given number of years.

04: */

05: public class InvestmentRunner

06: {

07: public static void main(String[] args)

08: {

09: final double INITIAL_BALANCE = 10000;

10: final double RATE = 5;

11: final int YEARS = 20;

12: Investment invest = new Investment(INITIAL_BALANCE, RATE);

13: invest.waitYears(YEARS);

14: double balance = invest.getBalance();

15: System.out.printf("The balance after %d years is %.2f\n",

16: YEARS, balance);

17: }

18: }

Output:
The balance after 20 years is 26532.98

InvestmentRunner.java

sum = 0;

for (int i=0; i<=10; i++);

sum=sum+1;

System.out.println(sum);

What will be printed?

Common Error

Common Error in Visual Logic

Correct Error

Loop Variable Scope

 Scope extends to the end of the loop

 Variable is no longer defined after the loop

 If you use after the loop, you must redefine it.

 Loops can be nested

 Use different variables with each loop

Example

for (i=1; i<=10; i++)

{

for (j=1; j<=10; j++)

{

System.out.print(i);

System.out.println(j);

}

}

System.out.println(i + “ “ + j);
It will give you an error!!

Cannot find symbol–variable i

Example

int i = 100;
int j = 200;
for (i=1; i<=3; i++)

{
for (j=1; j<=3; j++)

{
System.out.print(i);
System.out.println(j);
}

}
System.out.println(i + “ “ + j);

Output:

11
12
13
21
22
23
31
32
33
4 4

Nested Loop

int sum=0;
for (i=0; i<=3; i++)

{
for (j=1; j<=3; j++)

{
sum=i+j;
System.out.println(sum);
}

}

Sentinel Value

System.out.print("Enter value, Q to quit: ");
Scanner in = new Scanner (System.in);
String input = in.next();
while (! input.equalsIgnoreCase("Q"))

{
double x = Double.parseDouble(input);
System.out.println("You have entered " + x);
System.out.print("Enter value, Q to quit: ");
input = in.next();

}
System.out.print("Bye");

Sentinel Value

• Sometimes termination condition of a loop can only be

evaluated in the middle of the loop

• Then, introduce a boolean variable to control the loop:
boolean done = false;

while (!done)

{

Print prompt

String input = read input;

if (end of input indicated)

done = true;

else

{

Process input

}

}

Loop and Half

01: import java.util.Scanner;

02:

03: /**

04: This program computes the average and maximum of a set

05: of input values.

06: */

07: public class DataAnalyzer

08: {

09: public static void main(String[] args)

10: {

11: Scanner in = new Scanner(System.in);

12: DataSet data = new DataSet();

13:

14: boolean done = false;

15: while (!done)

16: {

17: System.out.print("Enter value, Q to quit: ");

18: String input = in.next();

19: if (input.equalsIgnoreCase("Q"))

20: done = true; Continued

DataAnalyzer.java

21: else

22: {

23: double x = Double.parseDouble(input);

24: data.add(x);

25: }

26: }

27:

28: System.out.println("Average = " + data.getAverage());

29: System.out.println("Maximum = " + data.getMaximum());

30: }

31: }

DataAnalyzer.java (cont.)

01: /**

02: Computes the average of a set of data values.

03: */

04: public class DataSet

05: {

06: /**

07: Constructs an empty data set.

08: */

09: public DataSet()

10: {

11: sum = 0;

12: count = 0;

13: maximum = 0;

14: }

15:

16: /**

17: Adds a data value to the data set

18: @param x a data value

19: */

20: public void add(double x)

21: {

Continued

DataSet.java

22: sum = sum + x;

23: if (count == 0 || maximum < x) maximum = x;

24: count++;

25: }

26:

27: /**

28: Gets the average of the added data.

29: @return the average or 0 if no data has been added

30: */

31: public double getAverage()

32: {

33: if (count == 0) return 0;

34: else return sum / count;

35: }

36:

37: /**

38: Gets the largest of the added data.

39: @return the maximum or 0 if no data has been added

40: */

Continued

DataSet.java (cont.)

Output:
Enter value, Q to quit: 10

Enter value, Q to quit: 0

Enter value, Q to quit: -1

Enter value, Q to quit: Q

Average = 3.0

Maximum = 10.0

41: public double getMaximum()

42: {

43: return maximum;

44: }

45:

46: private double sum;

47: private double maximum;

48: private int count;

49: }

DataSet.java (cont.)

• In a simulation, you repeatedly generate random numbers and

use them to simulate an activity

• Random number generator

Random generator = new Random(); int n =

generator.nextInt(a); // 0 < = n < a double x =

generator.nextDouble(); // 0 <= x < 1

• Throw die (random number between 1 and 6)

int d = 1 + generator.nextInt(6);

Random Numbers and Simulations

01: import java.util.Random;

02:

03: /**

04: This class models a die that, when cast, lands on a random

05: face.

06: */

07: public class Die

08: {

09: /**

10: Constructs a die with a given number of sides.

11: @param s the number of sides, e.g. 6 for a normal die

12: */

13: public Die(int s)

14: {

15: sides = s;

16: generator = new Random();

17: }

18:

Continued

Die.java

19: /**

20: Simulates a throw of the die

21: @return the face of the die

22: */

23: public int cast()

24: {

25: return 1 + generator.nextInt(sides);

26: }

27:

28: private Random generator;

29: private int sides;

30: }

Die.java (cont.)

01: /**

02: This program simulates casting a die ten times.

03: */

04: public class DieSimulator

05: {

06: public static void main(String[] args)

07: {

08: Die d = new Die(6);

09: final int TRIES = 10;

10: for (int i = 1; i <= TRIES; i++)

11: {

12: int n = d.cast();

13: System.out.print(n + " ");

14: }

15: System.out.println();

16: }

17: }

DieSimulator.java

Output:

6 5 6 3 2 6 3 4 4 1

Second Run:

3 2 2 1 6 5 3 4 1 2

DieSimulator.java (cont.)

