
Chapter 6

Iteration

Executes a block of code repeatedly

A condition controls how often the loop is executed

while (condition)

statement

Most commonly, the statement is a block statement (set of
statements delimited by { })

While Loops

Year Balance

0 $10,000

1 $10,500

2 $11,025

3 $11,576.25

4 $12,155.06

5 $12,762.82

Invest $10,000, 5% interest, compounded annually

Calculating the Growth of an

Investment

• When has the bank account reached a particular balance?

Calculating the Growth of an

Investment (Visual Logic)

• When has the bank account reached a particular balance?

int years;

while (balance < targetBalance)

{

years++;

double interest = balance * rate / 100;

balance = balance + interest;

}

Calculating the Growth of an

Investment

01: /**

02: A class to monitor the growth of an investment that

03: accumulates interest at a fixed annual rate.

04: */

05: public class Investment

06: {

07: /**

08: Constructs an Investment object from a starting balance and

09: interest rate.

10: @param aBalance the starting balance

11: @param aRate the interest rate in percent

12: */

13: public Investment(double aBalance, double aRate)

14: {

15: balance = aBalance;

16: rate = aRate;

17: years = 0;

18: }

19:

Investment.java

20: /**

21: Keeps accumulating interest until a target balance has

22: been reached.

23: @param targetBalance the desired balance

24: */

25: public void waitForBalance(double targetBalance)

26: {

27: while (balance < targetBalance)

28: {

29: years++;

30: double interest = balance * rate / 100;

31: balance = balance + interest;

32: }

33: }

34:

Investment.java (cont.)

35: /**

36: Gets the current investment balance.

37: @return the current balance

38: */

39: public double getBalance()

40: {

41: return balance;

42: }

43:

44: /**

45: Gets the number of years this investment has accumulated

46: interest.

47: @return the number of years since the start of the investment

48: */

49: public int getYears()

50: {

51: return years;

52: }

53:

54: private double balance;

55: private double rate;

56: private int years;

57: }

Investment.java (cont.)

01: /**

02: This program computes how long it takes for an investment

03: to double.

04: */

05: public class InvestmentRunner

06: {

07: public static void main(String[] args)

08: {

09: final double INITIAL_BALANCE = 10000;

10: final double RATE = 5;

11: Investment invest = new Investment(INITIAL_BALANCE, RATE);

12: invest.waitForBalance(2 * INITIAL_BALANCE);

13: int years = invest.getYears();

14: System.out.println("The investment doubled after "

15: + years + " years");

16: }

17: }

InvestmentRunner.java

Output:
The investment doubled after 15 years

InvestmentRunner.java (cont.)

What would happen if RATE was set to 0 in the main method

of the InvestmentRunner program?

Self Check

• int years = 0;

while (years < 20)

{

double interest = balance * rate / 100;

balance = balance + interest;

}

• int years = 20;

while (years > 0)

{

years++; // Oops, should have been years–

double interest = balance * rate / 100;

balance = balance + interest;

}

• Loops run forever – must kill program

Common Error: Infinite Loops

• int years = 0;

while (balance < 2 * initialBalance)

{

years++;

double interest = balance * rate / 100;

balance = balance + interest;

}

System.out.println("The investment reached the target

after " + years + " years.");

Should years start at 0 or 1?

Should the test be < or <=?

Common Error: Off-by-One Errors

• Look at a scenario with simple values:
initial balance: $100

interest rate: 50%

after year 1, the balance is $150

after year 2 it is $225, or over $200

so the investment doubled after 2 years
the loop executed two times, incrementing years each time

Therefore: years must start at 0, not at 1.

• interest rate: 100%
after one year: balance is 2 * initialBalance

loop should stop

Therefore: must use <

• Think, don't compile and try at random

Avoiding Off-by-One Error

• Executes loop body at least once:
do

statement

while (condition);

• Example: Validate input
double value;

do

{

System.out.print("Please enter a positive number: ");

value = in.nextDouble();

}

while (value <= 0);

Continued

do Loops

• Alternative:
boolean done = false;

while (!done)

{

System.out.print("Please enter a positive number: ");

value = in.nextDouble();

if (value > 0) done = true;

}

do Loops (cont.)

for Loops

• for (initialization; condition; update)

statement

• Example:
for (int i = 1; i <= n; i++)

{

double interest = balance * rate / 100;

balance = balance + interest;

}

• Equivalent to
initialization;

while (condition)

{ statement;

update; }

Continued

for Loops (cont.)

• Other examples:
for (years = n; years > 0; years--) . . .

for (x = -10; x <= 10; x = x + 0.5) . . .

for Loops (cont.)

01: /**

02: A class to monitor the growth of an investment that

03: accumulates interest at a fixed annual rate

04: */

05: public class Investment

06: {

07: /**

08: Constructs an Investment object from a starting balance and

09: interest rate.

10: @param aBalance the starting balance

11: @param aRate the interest rate in percent

12: */

13: public Investment(double aBalance, double aRate)

14: {

15: balance = aBalance;

16: rate = aRate;

17: years = 0;

18: }

20: /**

21: Keeps accumulating interest until a target balance has

22: been reached.

Investment.java (cont.)

23: @param targetBalance the desired balance

24: */

26: {

27: while (balance < targetBalance)

28: {

29: years++;

30: double interest = balance * rate / 100;

31: balance = balance + interest;

32: }

33: }

34:

35: /**

36: Keeps accumulating interest for a given number of years.

37: @param n the number of years

38: */

39: public void waitYears(int n)

40: {

41: for (int i = 1; i <= n; i++)

42: {

43: double interest = balance * rate / 100;

44: balance = balance + interest;

Investment.java (cont.)

45: }

46: years = years + n;

47: }

48:

49: /**

50: Gets the current investment balance.

51: @return the current balance

52: */

53: public double getBalance()

54: {

55: return balance;

56: }

57:

58: /**

59: Gets the number of years this investment has accumulated

60: interest.

61: @return the number of years since the start of the investment

62: */

63: public int getYears()

64: {

65: return years;

66: }

Investment.java (cont.)

67:

68: private double balance;

69: private double rate;

70: private int years;

71: }

Investment.java (cont.)

01: /**

02: This program computes how much an investment grows in

03: a given number of years.

04: */

05: public class InvestmentRunner

06: {

07: public static void main(String[] args)

08: {

09: final double INITIAL_BALANCE = 10000;

10: final double RATE = 5;

11: final int YEARS = 20;

12: Investment invest = new Investment(INITIAL_BALANCE, RATE);

13: invest.waitYears(YEARS);

14: double balance = invest.getBalance();

15: System.out.printf("The balance after %d years is %.2f\n",

16: YEARS, balance);

17: }

18: }

Output:
The balance after 20 years is 26532.98

InvestmentRunner.java

sum = 0;

for (int i=0; i<=10; i++);

sum=sum+1;

System.out.println(sum);

What will be printed?

Common Error

Common Error in Visual Logic

Correct Error

Loop Variable Scope

 Scope extends to the end of the loop

 Variable is no longer defined after the loop

 If you use after the loop, you must redefine it.

 Loops can be nested

 Use different variables with each loop

Example

for (i=1; i<=10; i++)

{

for (j=1; j<=10; j++)

{

System.out.print(i);

System.out.println(j);

}

}

System.out.println(i + “ “ + j);
It will give you an error!!

Cannot find symbol–variable i

Example

int i = 100;
int j = 200;
for (i=1; i<=3; i++)

{
for (j=1; j<=3; j++)

{
System.out.print(i);
System.out.println(j);
}

}
System.out.println(i + “ “ + j);

Output:

11
12
13
21
22
23
31
32
33
4 4

Nested Loop

int sum=0;
for (i=0; i<=3; i++)

{
for (j=1; j<=3; j++)

{
sum=i+j;
System.out.println(sum);
}

}

Sentinel Value

System.out.print("Enter value, Q to quit: ");
Scanner in = new Scanner (System.in);
String input = in.next();
while (! input.equalsIgnoreCase("Q"))

{
double x = Double.parseDouble(input);
System.out.println("You have entered " + x);
System.out.print("Enter value, Q to quit: ");
input = in.next();

}
System.out.print("Bye");

Sentinel Value

• Sometimes termination condition of a loop can only be

evaluated in the middle of the loop

• Then, introduce a boolean variable to control the loop:
boolean done = false;

while (!done)

{

Print prompt

String input = read input;

if (end of input indicated)

done = true;

else

{

Process input

}

}

Loop and Half

01: import java.util.Scanner;

02:

03: /**

04: This program computes the average and maximum of a set

05: of input values.

06: */

07: public class DataAnalyzer

08: {

09: public static void main(String[] args)

10: {

11: Scanner in = new Scanner(System.in);

12: DataSet data = new DataSet();

13:

14: boolean done = false;

15: while (!done)

16: {

17: System.out.print("Enter value, Q to quit: ");

18: String input = in.next();

19: if (input.equalsIgnoreCase("Q"))

20: done = true; Continued

DataAnalyzer.java

21: else

22: {

23: double x = Double.parseDouble(input);

24: data.add(x);

25: }

26: }

27:

28: System.out.println("Average = " + data.getAverage());

29: System.out.println("Maximum = " + data.getMaximum());

30: }

31: }

DataAnalyzer.java (cont.)

01: /**

02: Computes the average of a set of data values.

03: */

04: public class DataSet

05: {

06: /**

07: Constructs an empty data set.

08: */

09: public DataSet()

10: {

11: sum = 0;

12: count = 0;

13: maximum = 0;

14: }

15:

16: /**

17: Adds a data value to the data set

18: @param x a data value

19: */

20: public void add(double x)

21: {

Continued

DataSet.java

22: sum = sum + x;

23: if (count == 0 || maximum < x) maximum = x;

24: count++;

25: }

26:

27: /**

28: Gets the average of the added data.

29: @return the average or 0 if no data has been added

30: */

31: public double getAverage()

32: {

33: if (count == 0) return 0;

34: else return sum / count;

35: }

36:

37: /**

38: Gets the largest of the added data.

39: @return the maximum or 0 if no data has been added

40: */

Continued

DataSet.java (cont.)

Output:
Enter value, Q to quit: 10

Enter value, Q to quit: 0

Enter value, Q to quit: -1

Enter value, Q to quit: Q

Average = 3.0

Maximum = 10.0

41: public double getMaximum()

42: {

43: return maximum;

44: }

45:

46: private double sum;

47: private double maximum;

48: private int count;

49: }

DataSet.java (cont.)

• In a simulation, you repeatedly generate random numbers and

use them to simulate an activity

• Random number generator

Random generator = new Random(); int n =

generator.nextInt(a); // 0 < = n < a double x =

generator.nextDouble(); // 0 <= x < 1

• Throw die (random number between 1 and 6)

int d = 1 + generator.nextInt(6);

Random Numbers and Simulations

01: import java.util.Random;

02:

03: /**

04: This class models a die that, when cast, lands on a random

05: face.

06: */

07: public class Die

08: {

09: /**

10: Constructs a die with a given number of sides.

11: @param s the number of sides, e.g. 6 for a normal die

12: */

13: public Die(int s)

14: {

15: sides = s;

16: generator = new Random();

17: }

18:

Continued

Die.java

19: /**

20: Simulates a throw of the die

21: @return the face of the die

22: */

23: public int cast()

24: {

25: return 1 + generator.nextInt(sides);

26: }

27:

28: private Random generator;

29: private int sides;

30: }

Die.java (cont.)

01: /**

02: This program simulates casting a die ten times.

03: */

04: public class DieSimulator

05: {

06: public static void main(String[] args)

07: {

08: Die d = new Die(6);

09: final int TRIES = 10;

10: for (int i = 1; i <= TRIES; i++)

11: {

12: int n = d.cast();

13: System.out.print(n + " ");

14: }

15: System.out.println();

16: }

17: }

DieSimulator.java

Output:

6 5 6 3 2 6 3 4 4 1

Second Run:

3 2 2 1 6 5 3 4 1 2

DieSimulator.java (cont.)

