
NFIS2 Software

2

Software
• Image Group of the National Institute of

Standards and Technology (NIST)
• NIST Fingerprint Image Software Version 2

(NFIS2)
• Developed for Federal Bureau of Investigation

(FBI) and Department of Homeland Security
(DHS)
• Aims to facilitate and support the automated

manipulation and processing of fingerprint
images.

3

NIST Fingerprint Image Software
Version 2 (NFIS2)
• NFIS2 contains 7 general categories.
• We investigate 4 out of 7: PCASYS, MINDTCT,

NFIQ and BOZORTH3.
• PCASYS is a neural-network based fingerprint

classification system, which categorized a
fingerprint image into the class of arch, left or
right loop, scar, tented arch, or whorl.
• PCASYS is the only known no cost system of its

kind.

4

NIST Fingerprint Image Software
Version 2 (NFIS2)
• MINDTCT is a minutiae detector that

automatically locates and records ridge ending
and bifurcations in a fingerprint image.
• MINDTCT includes minutiae quality assessment

based on local image conditions.
• The FBI’s Universal Latent Workstation uses

MINDTCT, and it too is the only known no cost
system of its kind.

5

NIST Fingerprint Image Software
Version 2 (NFIS2)
• NFIQ is a fingerprint image quality

algorithm that analyses a fingerprint
image and assigns a quality value of 1
(highest quality) – 5 (lowest quality) to
the image.
• Higher quality images produce significantly

better performance with matching
algorithm.

6

NIST Fingerprint Image Software
Version 2 (NFIS2)
• BOZORTH3 is a minutiae based fingerprint

matching algorithm that will do both one-to-one
and one-to-many matching operations.
• BOZORTH3 matching algorithm computes a

match score between the minutiae from any two
fingerprints to help determine if they are from
the same finger.
• BOZORTH3 accepts minutiae generated by the

MINDTCT algorithm.
• Written by Allan S. Bozorth while at the FBI.

7

Fingerprint Classification (PCASYS)

• PCASYS is a prototype/demonstration pattern-level
fingerprint classification program.
• It is provided in the form of a source code distribution

and is intended to run on a desktop workstation.
• The program reads and classifies each of a set of

fingerprint image files, optionally displaying the results
of several processing stages in graphical form.
• This distribution contains 2700 fingerprint images that

may be used to demonstrate the classifier; it can also be
run on user-provided images.

8

Fingerprint Classification (PCASYS)

• The basic method used by the PCASYS
fingerprint classifier consists of,
– First, extracting from the fingerprint to be classified

an array (a two-dimensional grid in this case) of the
local orientations of the fingerprint’s ridges and
valleys.

– Second, comparing that orientation array with similar
arrays made from prototype fingerprints ahead of
time.

• Refer to nbis_non_export_control.pdf for details

9

Fingerprint Classification (PCASYS)

Fingerprint used to demonstrate the fingerprint classification process
(s0025236.wsq).

10

PCASYS -- Segmentor

• Segmentor input an 8-bit grayscale raster of width
at least 512 pixels and height at least 480 pixels
(these dimensions, and scanned at about 19.69 pixels
per millimeter (500 pixels per inch).

• The segmentor produces, as its output, an image that
is 512×480 pixels in size by cutting a rectangular
region of these dimensions out of the input image.

11

PCASYS -- Segmentor
1. the segmentor produces a small binary (two-valued or logical-

valued) image, and the part of the image that contains ink is called
foreground.

2. the routine performs some cleanup work on the foreground-image,
the main purpose of which is to delete those parts of the foreground
that correspond to printing or writing rather than the finger
impression.

3-6. the routine uses the edges to calculate the overall slope of the
foreground and fits a straight line to each edge by linear regression.

7. last frame in Figure 7 is the (cleaned-up) foreground with an outline
superimposed on it showing where the segmentor has decided to
cut.

12

PCASYS -- Segmentor

resulting segmented image

13

PCASYS - Image Enhancement

• Perform the forward two-dimensional Fast
Fourier transform (FFT) to convert the data from
its original (spatial) representation to a
frequency representation.
• The backward 2-d FFT is done to return the

enhanced data to a spatial representation before
snipping out the middle 16×16 pixels and
installing them into the output image.

14

PCASYS - Image Enhancement
• Noticeable difference seen between the original and

enhanced versions is the increase in contrast.
• The more important change caused by the enhancer is the

improved smoothness and stronger ridge/valley structure
of the image.
• Discontinuities are visible at the boundaries of some

output squares have no major harmful effect on
subsequent processing.

Sample fingerprint after enhancement

15

PCAYSIS - Ridge-Valley Orientation
Detector

• This step detects the local orientation of
the ridges and valleys of the finger
surface, and produces an array of regional
averages of these orientations.

16

PCAYSIS - Ridge-Valley Orientation Detector
• depicts the local average orientations that were detected

in the segmented and filtered image from the example
fingerprint.
• Array of local average orientations of the example

fingerprint. Each bar, depicting an orientation, is
approximately parallel to the local ridges and valleys.

17

PCASYS -- Registration

• Registration is a process that the classifier
uses in order to reduce the amount of
translation variation between similar
orientation arrays.
• registration improves subsequent

classification accuracy.

18

PCASYS -- Registration

• Left: Orientation array Right: Registered orientation
array. The plus sign is registration point (core) found by
R92 (an algorithm), and plus sign in a square is standard
(median) registration point.

19

PCASYS -- Regional Weights

• In order to allow the important central
region of the fingerprint to have more
weight than the outer regions; what we
call regional weights.
• Involving the application of linear

transforms prior to PNN distance
computations, we obtained the best
results by using regional weights.

20

PCASYS -- Regional Weights
• Absolute values of the optimized regional

weights. Each square represents one weight,
associated with a 2×2 block from the registered
orientation array.

21

PCASYS --Probabilistic Neural Network Classifier
• Input the low-dimensional feature vector that is

the output of the transform (PCA) and
determine the class of the fingerprint.
• Probabilistic Neural Network (PNN) classifies an

incoming feature vector by computing the value
of spherical Gaussian kernel functions centered
at each of a large number of stored prototype
feature vectors.
• These prototypes were made ahead of time

from a training set of fingerprints of known class
by using the same preprocessing and feature
extraction that was used to produce the
incoming feature vector.

22

PCASYS --Probabilistic Neural Network
Classifier

• For each class, an activation is made by
adding up the values of the kernels
centered at all prototypes of that class;
the hypothesized class is then defined to
be the one whose activation is largest.

23

PCASYS --Probabilistic Neural Network
Classifier
• This is a bar graph of the normalized activations

produced for the example fingerprint.
• All 6 normalized activations are shown here.
• The whorl (W) class has won and so is the hypothesized

class (correctly as it turns out), but the left loop (L) class
has also received a fairly large activation and therefore
the confidence is only moderately high.

PNN output activations for the
example fingerprint

24

PCASYS -- Multi-Layer Perceptron
Neural Network Classifier
• MLP output activations for the example

fingerprint

25

PCASYS - Output
• Each line shows: the fingerprint filename; the actual

class (A, L, R, S, T, and W stand for the pattern-level
classes arch, left loop, right loop, sear, tented arch, and
whorl); the output of the classifier (a hypothesized class
and a confidence); the output of the auxiliary pseudo-
ridge tracing whorl detector (whether or not a concave-
upward shape, a “conup,” was found); the final output
of the hybrid classifier, which is a hypothesized class and
a confidence; and whether this hypothesized class was
right or wrong.

26

Minutiae Detection (MINDTCT)

27

Minutiae Detection (MINDTCT)

• MINDTCT takes a fingerprint image and locates
all minutiae in the image, assigning to each
minutia point its location, orientation, type, and
quality.
• The command, mindtct, reads a fingerprint

image from an ANSI/NIST, WSQ, baseline JPEG,
lossless JPEG file, or IHead formatted file.
• Mindtct outputs the minutiae identification based

on the ANSI/NIST standard or the M1 (ANSI
INCITS 378-2004) representation.

28

Detected Minutiae

Minutiae results

29

MINDTCT

Minutiae detection process

30

MINDTCT -- Generate Image Quality
Maps
• The image quality of a fingerprint may vary, especially in

the case of latent fingerprints, it is critical to be able to
analyze the image and determine areas that are
degraded and likely to cause problems.
• Several characteristics can be measured that are

designed to convey information regarding the quality of
localized regions in the image.
• These include determining the directional flow of ridges

in the image and detecting regions of low contrast, low
ridge flow, and high curvature.
• These conditions represent unstable areas in the image

where minutiae detection is unreliable, and together
they can be used to represent levels of quality in the
image.

31

MINDTCT -- Direction Map
• One of the fundamental steps in this minutiae

detection process is deriving a directional ridge
flow map, or direction map.
• The purpose of this map is to represent areas of

the image with sufficient ridge structure. Well-
formed and clearly visible ridges are essential to
reliably detecting points of ridge ending and
bifurcation.
• In addition, the direction map records the

general orientation of the ridges as they flow
across the image.

32

MINDTCT -- Direction Map
• Within an orientation, the pixels along each rotated row of the

window are summed together, forming a vector of 24 pixel row
sums.

• The resonance coefficients produced from convolving each of the 16
orientation’s row sum vectors with the 4 different discrete
waveforms are stored and then analyzed.

• Generally, the dominant ridge flow direction for the block is
determined by the orientation with maximum waveform resonance.

waveform frequenciesWindow rotation at incremental orientations

33

MINDTCT -- Direction Map

• Direction Map Result

34

MINDTCT

• Low Contrast Map
• Low Flow Map
• High curve map

35

MINDTCT--Quality Map
• the low contrast map, low flow map, and the high curve map all

point to different low quality regions of the image.
• The information in these maps is integrated into one general map,

and contains 5 levels of quality.

Portion of Quality Map

36

MINDTCT -- Binarize Image

• The minutiae detection algorithm in this system
is designed to operate on a bi-level (or binary)
image where black pixels represent ridges and
white pixels represent valleys in a finger's
friction skin.
• To create this binary image, every pixel in the

grayscale input image must be analyzed to
determine if it should be assigned a black or
white pixel.
• This process is referred to as image binarization.

37

MINDTCT -- Binarize Image
• A pixel is assigned a binary value based on the ridge

flow direction associated with the block the pixel is
within.

• With the pixel of interest in the center, the grid is
rotated so that its rows are parallel to the local ridge
flow direction

38

MINDTCT -- Binarize Image
• Grayscale pixel intensities are accumulated along

each rotated row in the grid, forming a vector of
row sums.
• The binary value to be assigned to the center

pixel is determined by multiplying the center row
sum by the number of rows in the grid and
comparing this value to the accumulated
grayscale intensities within the entire grid.
• If the multiplied center row sum is less than the

grid's total intensity, then the center pixel is set
to black; otherwise, it is set to white.

39

MINDTCT -- Binarize Image

• The binarization results need to be robust in
terms of effectively dealing with varying degrees
of image quality and reliable in terms of
rendering ridge and valley structures accurately.

Binarization results

40

MINDTCT--Detect Minutiae

• This step methodically scans the binary image of a
fingerprint, identifying localized pixel patterns that
indicate the ending or splitting of a ridge.
• This pattern may represent the end of a black ridge

protruding into the pattern from the right.

Pixel pattern used to detect ridge endings

41

MINDTCT -- Pixel patterns used to
detect minutiae

42

Remove False Minutiae

• These steps include removing islands,
lakes, holes, minutiae in regions of poor
image quality, side minutiae, hooks,
overlaps, minutiae that are too wide, and
minutiae that are too narrow (pores).

43

MINDTCT -- Output Minutiae File

• The direction map is stored in <oroot>.dm;
• The low contrast map is stored in <oroot>.lcm;
• The low flow map is stored in <oroot>.lfm;
• The high curve map is stored in <oroot>.hcm; and
• The quality map is stored in <oroot>.qm.
• The maps are represented by a grid of numbers, each

corresponding to a block in the fingerprint image.
• The resulting minutiae can be accessed in the text file <oroot>.min

containing a formatted listing of attributes associated with each
detected minutiae in the fingerprint image.

• For all input types the detected minutiae are also written to a text
file <oroot>.xyt that is formatted for use with the bozorth3
matcher.

• This file has one space delimited line per minutiae containing its x
and y coordinate, direction angle theta, and the minutiae quality.

44

Image Quality (NFIQ)

45

Image Quality (NFIQ)

• The NFIQ algorithm is an implementation of the
NIST “Fingerprint Image Quality” algorithm.
• It takes an input image that is in ANSI/NIST or

NIST IHEAD format or compressed using WSQ,
baseline JPEG, or lossless JPEG.
• NFIQ outputs the image quality value
• for the image (where 1 is highest quality and 5

is lowest quality).

46

Image Quality (NFIQ)

• Neural networks offer a very powerful and very
general framework for representing non-linear
mappings from several input variables to several
output variables, where the form of the mapping
is governed by a number of adjustable
parameters (weights).
• The process of determining the values for these

weights based on the data set is called training
and the data set of examples is generally
referred to as a training set.

47

How to perform training
• Fing2pat gets the list of gray-scale fingerprint images in

the training set along with their class labels as input and
computes patterns for MLP training and writes them to a
binary file.
• Each pattern consists of a feature vector, along with a

class vector.
• The user can compute the global mean and standard

deviation statistics using znormdat or use the set
provided in nfiq/znorm.dat.
• These global statistics can be applied to new pattern

files using nzormpat.
• The user needs to write a spec file, setting parameters

of the training runs that MLP is to perform.
• The spec file used in the training of NIST Fingerprint

Image Quality can be found in the file nfiq/spec.

48

Minutiae Matching (BOZORTH3)

49

Minutiae Matching (BOZORTH3)
• The BOZORTH3 matcher uses only the location (x,y) and

orientation (theta) of the minutia points to match the
fingerprints.
• The matcher builds separate tables for the fingerprints

being matched that define distance and orientation
between minutia in each fingerprint.
• These two tables are then compared for compatibility

and a new table is constructed that stores information
showing the inter-fingerprint compatibility.
• The inter-finger compatibility table is used to create a

match score by looking at the size and number of
compatible minutia clusters.

50

Minutiae Matching (BOZORTH3)

• Two key things are important to note
regarding this fingerprint matcher:

1. Minutia features are exclusively used and
limited to location (x,y) and orientation ‘t’,
represented as {x,y,t}.

2. The algorithm is designed to be rotation
and translation invariant.

51

Minutiae Matching (BOZORTH3)
• The algorithm is comprised of three major steps:
1. Construct Intra-Fingerprint Minutia Comparison Tables

– One table for the probe fingerprint and
– One table for each gallery fingerprint to be matched against.

2. Construct an Inter-Fingerprint Compatibility Table
– Compare a probe print’s minutia table to a gallery print’s

minutia table and construct a new inter-fingerprint compatibility
table.

3. Traverse the Inter-Fingerprint Compatibility Table
a. Traverse and link table entries into clusters
b. Combine compatible clusters and accumulate a match
score.

52

Minutiae Matching (BOZORTH3)

• Construct Intra-Fingerprint Minutia
Comparison Tables
– Compute relative measurements from each

minutia in a fingerprint to all other minutia in
the same fingerprint.

– These relative measurements are stored in a
minutia comparison table and are what
provide the algorithm’s rotation and
translation invariance.

53

Construct Intra-Fingerprint Minutia
Comparison Tables

• the distance dkj is computed
between the two minutia
locations.
• the angle of each minutia’s

orientation and the
intervening line between
both minutiae.
• Each entry consists of

{dkj, β1, β2, k, j, θkj} where
β1 = min(βk,βj) and β2 =
max(βk,βj)

54

• The following three tests are conducted to determine if table
entries Pm and Gn are “compatible.”
• The first test checks to see if the corresponding distances are

within a specified tolerance Td.
• The last two tests check to see if the relative minutia angles are

within a specified tolerance Tβ. ∆d () and ∆β () are “delta” or
difference functions.

55

Traverse the Inter-Fingerprint
Compatibility Table
• At this point in the process, we have constructed a

compatibility table which consists of a list of
compatibility association between two pairs of potentially
corresponding minutiae.
• These associations represent single links in a

compatibility graph.
• To determine how well the two fingerprints match each

other, a simple goal would be to traverse the
compatibility graph finding the longest path of linked
compatibility associations.
• The match score would then be the length of the longest

path.

