
DECISIONS

Chapter 5

The if Statement

 Action based on a conditions

 If the condition is true, the body of the statement is

executed

if (amount <= balance)

balance = balance – amount;

Flow Chart for If Statement

Amount <=
Balance?

balance=
balance - amount

Look

familiar?

The if Statement (Java Form)

If (amount < = balance)

balance = balance – amount;

else

balance = balance –

OVERDRAFT_PENALTY;

Amount <=
Balance?

balance=
balance –

OVERDRAFT_PENALTY

Java Statements . Visual Logic .

If Else Flowchart

Java Code for If Else

If (amount < = balance)
balance = balance – amount;

else
balance = balance –

OVERDRAFT_PENALTY;

The if Statement

 What if you need to execute multiple statements

based on decision?

if (amount <= balance)

{

double balance = balance – amount;

}

What Is Wrong

if (amount <= balance)

newBalance = balance – amount;

balance = newBalance;

if (amount <= balance)

{

newBalance = balance – amount;

balance = newBalance;

}

Relational Operators

 Test the relationship between two values.

 Most of the operators are similar to Visual Logic

 There are some differences. A big one is equals.

 In Visual Logic equals is =. In Java ==.

 Not equal in Java is !=.

Relational Operators

Java Description

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Equal

!= Not equal

Note: Equal and Not equal are different in Java than Visual Logic!

Comparing Floating-Point Numbers

 Must be careful in comparing

 Rounding problems

Java Example of Floating Point

Comparison

Comparing floating – Point Numbers

 Need to test for close enough

final double EPSILON = 1E-14;

if (Math.abs(x-y) <= EPSILON)

// x is approximately equal to y

Comparing Strings

 Can’t use mathematical operators

 Special methods have been developed

if (string1.equals(string2))….

 Remember case matters

 Special method

if (string1.equalsIgnoreCase(string2))….

This is very different from Visual Logic

Comparing Strings

 May want to compare other than equal

string1.compareTo(string2) < 0;

Compares based on dictionary

 What happen if we use ==

 We are testing the string on left with constant

If (nickname == “Rob”)

 Testing to see if the variable nickname value is Rob. Will be
true only if it points to the string object

Remember that a string is and object and what is

stored is the address. That is the problem

Comparing Strings

 String nickname = “Rob”;

 If(nickname == “Rob”); //Test is true

 String name=“Robert”;

 String nickname = name.substring(0,3);

 If(nickname == “Rob”); //Test is false

Comparing Objects

 Use == you are testing to determine if the reference of

the two objects are the same.

 In other words, do they point to the same address

Rectangle box1 = new Rectangle(5, 10, 20, 30);

Rectangle box2 = box1;

Rectangle box3 = new Rectangle(5, 10, 20, 30);

box1 == box2; // true or false

box1 == box 3; //true or false

Testing for Null

 Null is a special object reference

 It says no value has been set.

 The memory has been set aside or instantiated

 Null is not the same as the empty string “”

 “” assigns a blank

 Null means no assignment has been made

if (x = null)………

Multiple Alternatives

 Require more than 1 if/else decisions

 Need to make series of related comparisons

 Use

if ….

else if ……

Example

public String getDescription()

{

if (richter >=8.0)

r = “Most structures fall”;

else if (richter >= 7.0)

r = “Many buildings destroyed”;

……….

else

r= “Negative numbers are not valid”;

return r;

}

Switch Statement

 Use instead of a sequence of if/else/else
statements.

int digit;

…..

Switch (digit)

{

case 1: System.out.print(“one”);

case 2: System.out.print(“two”);

default: System.out.print(“error”);

}

Nested Branches

 Based on the decision of one statement make another
decision.

Nested Branch in Visual Logic

Nested Branches - Java

If (status == SINGLE)

{

if (income <= SINGLE_BRACKET1)

tax = Rate1 * income;

else if (income <= SINGLE_BRACKET2)

tax = Rate2 * income.

Enumeration Types

 Think of it as a switch statement for strings.

 You assure that they are categorized correctly

public enum FilingStatus {SINGLE, MARRIED}

FilingStatus status = FilingStatus.SINGLE;

 Use the == to compare enumerated values

if (status==FilingStatus.SINGLE)…

Using Boolean Expressions

 True/False

 Assigned to an expression such as

<1000

double amount = 0;

System.out.println(<1000);

Output: true

Predicate Methods

 Method that returns a boolean value

public class BankAccount

{

public boolean isOverdrawn()

{

return balance < 0;

}

}

Character Class Predicate Methods

 isDigit

 isLetter

 isUpperCase

 isLowerCase

 Scanner class

 hasNext()

 nextInt

Boolean Operators

 Test two conditions
 and &&

 or ||

if (input.equals(“S”) || input.equals(“M”))…..

If(input.equals(“S”) && input.equals(“M”)) ….

 Can use ! – means not

 Negates the answer

Same as

Visual Logic

Note

repeat

Boolean Variables

 Primitive type

 Must declare as boolean

private boolean married;

if (married)

…..

 Don’t use

if (married == true)…

