
DECISIONS

Chapter 6

The if Statement

 Action based on a conditions

 If the condition is true, the body of the statement is

executed

if (amount <= balance)

balance = balance – amount;

Flow Chart for If Statement

Amount <=
Balance?

balance=
balance - amount

Look

familiar?

The if Statement (Java Form)

If (amount < = balance)

balance = balance – amount;

else

balance = balance –

OVERDRAFT_PENALTY;

Amount <=
Balance?

balance=
balance –

OVERDRAFT_PENALTY

Java Statements . Visual Logic .

If Else Flowchart

Java Code for If Else

If (amount < = balance)
balance = balance – amount;

else
balance = balance –

OVERDRAFT_PENALTY;

The if Statement

 What if you need to execute multiple statements

based on decision?

if (amount <= balance)

{

double balance = balance – amount;

}

What Is Wrong

if (amount <= balance)

newBalance = balance – amount;

balance = newBalance;

if (amount <= balance)

{

newBalance = balance – amount;

balance = newBalance;

}

Relational Operators

 Test the relationship between two values.

 Most of the operators are similar to Visual Logic

 There are some differences. A big one is equals.

 In Visual Logic equals is =. In Java ==.

 Not equal in Java is !=.

Relational Operators

Java Description

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Equal

!= Not equal

Note: Equal and Not equal are different in Java than Visual Logic!

Comparing Floating-Point Numbers

 Must be careful in comparing

 Rounding problems

Java Example of Floating Point

Comparison

Comparing floating – Point Numbers

 Need to test for close enough

final double EPSILON = 1E-14;

if (Math.abs(x-y) <= EPSILON)

// x is approximately equal to y

Comparing Strings

 Can’t use mathematical operators

 Special methods have been developed

if (string1.equals(string2))….

 Remember case matters

 Special method

if (string1.equalsIgnoreCase(string2))….

This is very different from Visual Logic

Comparing Strings

 May want to compare other than equal

string1.compareTo(string2) < 0;

Compares based on dictionary

 What happen if we use ==

 We are testing the string on left with constant

If (nickname == “Rob”)

 Testing to see if the variable nickname value is Rob. Will be
true only if it points to the string object

Remember that a string is and object and what is

stored is the address. That is the problem

Comparing Strings

 String nickname = “Rob”;

 If(nickname == “Rob”); //Test is true

 String name=“Robert”;

 String nickname = name.substring(0,3);

 If(nickname == “Rob”); //Test is false

Comparing Objects

 Use == you are testing to determine if the reference of

the two objects are the same.

 In other words, do they point to the same address

Rectangle box1 = new Rectangle(5, 10, 20, 30);

Rectangle box2 = box1;

Rectangle box3 = new Rectangle(5, 10, 20, 30);

box1 == box2; // true or false

box1 == box 3; //true or false

Testing for Null

 Null is a special object reference

 It says no value has been set.

 The memory has been set aside or instantiated

 Null is not the same as the empty string “”

 “” assigns a blank

 Null means no assignment has been made

if (x = null)………

Multiple Alternatives

 Require more than 1 if/else decisions

 Need to make series of related comparisons

 Use

if ….

else if ……

Example

public String getDescription()

{

if (richter >=8.0)

r = “Most structures fall”;

else if (richter >= 7.0)

r = “Many buildings destroyed”;

……….

else

r= “Negative numbers are not valid”;

return r;

}

Switch Statement

 Use instead of a sequence of if/else/else
statements.

int digit;

…..

Switch (digit)

{

case 1: System.out.print(“one”);

case 2: System.out.print(“two”);

default: System.out.print(“error”);

}

Nested Branches

 Based on the decision of one statement make another
decision.

Nested Branch in Visual Logic

Nested Branches - Java

If (status == SINGLE)

{

if (income <= SINGLE_BRACKET1)

tax = Rate1 * income;

else if (income <= SINGLE_BRACKET2)

tax = Rate2 * income.

Enumeration Types

 Think of it as a switch statement for strings.

 You assure that they are categorized correctly

public enum FilingStatus {SINGLE, MARRIED}

FilingStatus status = FilingStatus.SINGLE;

 Use the == to compare enumerated values

if (status==FilingStatus.SINGLE)…

Using Boolean Expressions

 True/False

 Assigned to an expression such as

<1000

double amount = 0;

System.out.println(<1000);

Output: true

Predicate Methods

 Method that returns a boolean value

public class BankAccount

{

public boolean isOverdrawn()

{

return balance < 0;

}

}

Character Class Predicate Methods

 isDigit

 isLetter

 isUpperCase

 isLowerCase

 Scanner class

 hasNext()

 nextInt

Boolean Operators

 Test two conditions
 and &&

 or ||

if (input.equals(“S”) || input.equals(“M”))…..

If(input.equals(“S”) && input.equals(“M”)) ….

 Can use ! – means not

 Negates the answer

Same as

Visual Logic

Note

repeat

Boolean Variables

 Primitive type

 Must declare as boolean

private boolean married;

if (married)

…..

 Don’t use

if (married == true)…

