
IMPLEMENTING CLASSES

Chapter 3

Black Box

 Something that magically does its thing!

 You know what it does but not how.

 You really don’t care how.

 Example – car

 Its interaction with the outside world is know.

 You know how to interface with it.

Encapsulation

 The hiding of unimportant details

 Black box provides encapsulation

 Somebody has to come up with the concept.

 Software uses encapsulation to take complex routines
and form “black boxes”

 Object-oriented programming

 Black-boxes from which a program is manufactured are
called objects

 We learn the interfaces and what they are to do but not how
they do it.

Abstraction

 Taking away inessential features

 Formal definition: the process of finding the essential
feature set for a building block of a program such
as a class

 What we know

 What it does

 How to interface with it

 What we don’t how

 How it does it

Classes

 Designer must understand the problem

 Designer must understand the behavior of the class

 Others can use the class

 They don’t need to understand the workings

 Must provide a means of interfacing with class

Example

 We will use a bank account

 We will call our class BankAccount

 This example will be used through out the semester

and this book

What to Do

 Design a BankAccount class that other programmers

can use (abstraction)

 Find essential operations

 Deposit money

 Withdraw money

 Get the current balance

 Programmers who use class will view its objects as

black boxes

What To Do

 Each operation == a method

 Turn the essential operations into a method or a

black box

What To Do

 Methods needed

 public void deposit(double amount)

 public void withdraw(double amount)

 public double getBalance()

 Which are accessors?

 Which are mutators?

What to Do

 When we want to use one of the methods we must call

it.

 Example of methods calls

 harrysChecking.deposit(2000)

 harrysChecking.withdraw(500)

 System.out.println(harryChecking.getBalance())

Methods

 Every method contains:

 An access specifier (usually public)

 The return type

◼ Void (no return)

◼ Type (int, double, String)

 Name of the method

 List of the parameters () or (something)

Methods

public void deposit(double amount)

{

method body

}

public void withdraw(double amount)

public double getBalance()

Contructors

 Contain instructions to initialize objects

 Resemble methods

 When you create an object the constructor is called

BankAccount harrysChecking = new BankAccount ();

BankAccount harrysChecking = new BankAccount (5000);

Constructor

 Difference between constructor and method

 Name of constructor is the same as the class

 Have not return type not even void

Creating Constructors

public class BankAccount
{

// Constructors
public BankAccount()
{
Fill in later
}
public BankAccount(double initialBalance)
{
Fill in later
}

}

Instance Field

 An object stores its data in instance fields

 Instance fields are the variables associated with the

object

 Field – storage location within a block of memory

 Instance – the object of the class

Instance Field

 Instance field declaration consists of:

 An access specifier (usually private)

 The type of the instance field

 Name of the instance field

Instance Field Declaration

public class BankAccount

{

…..

private double balance;

…..

}

Every object of BankAccount will have a field named
balance

What Does Private Mean

 Instance fields are hidden from the programmer who
uses the class

 They are only of concern to the programmer who
implement the class

 All access must occur through public methods not
instance fields

 The process of hiding data and providing methods
for data access is called encapsulation

Instance Fields

Access to Instance Fields

 Separate method

 Example: getBalance

 Returns the balance

 Can grant the user access to only get the balance the

not change the balance

 You control who has access to what

Implementing Constructors

 Constructors contain instructions to initialize the

instance fields of an object

public BankAccount()

{

balance = 0;

}

public BankAccount(double initialBalance)

{

balance = initialBalance;

}

Constructor Call Example



 Create a new object of type BankAccount

 Call the 2nd constructor (since the construction parameter

supplied matches the type of 2nd)

 Set the parameter variable initialBalance to 1000

 In the constructor the balance instance field of the newly

created object is set to initialBalance

BankAccount harrysChecking = new BankAccount(1000.0);

Constructor Call Example

 Return an object reference, that is, the memory location

of the object, as the value of the new expression

 Store that object reference in the harrysChecking

variable

BankAccount harrysChecking = new BankAccount(1000);

Instance Fields

1000.00

File BankAccount.java

01: /**

02: A bank account has a balance that can be changed by

03: deposits and withdrawals.

04: */

05: public class BankAccount

06: {

07: /**

08: Constructs a bank account with a zero balance.

09: */

10: public BankAccount()

11: {

12: balance = 0;

13: }

14:

15: /**

16: Constructs a bank account with a given balance.

17: @param initialBalance the initial balance

18: */
Continued…

File BankAccount.java

19: public BankAccount(double initialBalance)

20: {

21: balance = initialBalance;

22: }

23:

24: /**

25: Deposits money into the bank account.

26: @param amount the amount to deposit

27: */

28: public void deposit(double amount)

29: {

30: double newBalance = balance + amount;

31: balance = newBalance;

32: }

33:

34: /**

35: Withdraws money from the bank account.

36: @param amount the amount to withdraw
Continued…

File BankAccount.java

37: */

38: public void withdraw(double amount)

39: {

40: double newBalance = balance - amount;

41: balance = newBalance;

42: }

43:

44: /**

45: Gets the current balance of the bank account.

46: @return the current balance

47: */

48: public double getBalance()

49: {

50: return balance;

51: }

52:

53: private double balance;

54: }

Testing a Class

 We need to be sure our Class (in this case

BankAccount) works correctly

 Write a test case or tester class

 Construct one or more objects of the class that is being

tested

 Invoke one or more methods

 Print out one or more results

 Print the expected results

BankAccountTester.java

01: /**

02: A class to test the BankAccount class.

03: */

04: public class BankAccountTester

05: {

06: /**

07: Tests the methods of the BankAccount class.

08: @param args not used

09: */

10: public static void main(String[] args)

11: {

12: BankAccount harrysChecking = new BankAccount();

13: harrysChecking.deposit(2000);

14: harrysChecking.withdraw(500);

System.out.println(“Expected result: 1500”);

15: System.out.println(harrysChecking.getBalance());

16: }

17: }

Categories of Variables

 Categories of variables

 Instance fields (balance in BankAccount)

 Local variables (newBalance in deposit method)

 Parameter variables (amount in deposit method)

 An instance field belongs to an object

 The fields stay alive until no method uses the object any

longer

Categories of Variables

 Local & parameter variable

 Local variables must be initialized

 Parameter variables are initialized in the method call

 Instance fields that are numbers are initialized to

zero by default

 Object references are set to “null” by default

Categories of Variables

 In Java, the garbage collector periodically reclaims

objects when they are no longer used

 Local and parameter variables belong to a method

Lifetime of Variables

harrysChecking.deposit(500);

double newBalance = balance + amount;

balance = newBalance;

Continued…

Lifetime of Variables

Figure 7:

Lifetime of Variables Continued…

Lifetime of Variables

Figure 7:

Lifetime of Variables

Implicit and Explicit Method

Parameters

 The implicit parameter of a method is the object on which
the method is invoked

momsSavings.withdraw(500);

 Sometime you will see the word this used as a
reference and denotes the implicit parameter

Implicit parameter

Implicit and Explicit Method

Parameters

 Use of an instance field name in a method denotes

the instance field of the implicit parameter

public void withdraw(double amount)

{

double newBalance = balance - amount;

balance = newBalance;

}

Implicit and Explicit Method

Parameters

 balance is the balance of the object to the left of the dot:

means

double newBalance = momsSavings.balance - amount;

momsSavings.balance = newBalance;

momsSavings.withdraw(500)

Implicit Parameters and

this

 Every method has one implicit parameter

 The implicit parameter is always called this

 Exception: Static methods do not have an implicit

parameter (more later) – remember main (no object)

double newBalance = balance + amount;

// actually means

double newBalance = this.balance + amount;

Implicit Parameters and

this

Figure 8:

The Implicit Parameter of a Method Call

