
IMPLEMENTING CLASSES

Chapter 3

Black Box

 Something that magically does its thing!

 You know what it does but not how.

 You really don’t care how.

 Example – car

 Its interaction with the outside world is know.

 You know how to interface with it.

Encapsulation

 The hiding of unimportant details

 Black box provides encapsulation

 Somebody has to come up with the concept.

 Software uses encapsulation to take complex routines
and form “black boxes”

 Object-oriented programming

 Black-boxes from which a program is manufactured are
called objects

 We learn the interfaces and what they are to do but not how
they do it.

Abstraction

 Taking away inessential features

 Formal definition: the process of finding the essential
feature set for a building block of a program such
as a class

 What we know

 What it does

 How to interface with it

 What we don’t how

 How it does it

Classes

 Designer must understand the problem

 Designer must understand the behavior of the class

 Others can use the class

 They don’t need to understand the workings

 Must provide a means of interfacing with class

Example

 We will use a bank account

 We will call our class BankAccount

 This example will be used through out the semester

and this book

What to Do

 Design a BankAccount class that other programmers

can use (abstraction)

 Find essential operations

 Deposit money

 Withdraw money

 Get the current balance

 Programmers who use class will view its objects as

black boxes

What To Do

 Each operation == a method

 Turn the essential operations into a method or a

black box

What To Do

 Methods needed

 public void deposit(double amount)

 public void withdraw(double amount)

 public double getBalance()

 Which are accessors?

 Which are mutators?

What to Do

 When we want to use one of the methods we must call

it.

 Example of methods calls

 harrysChecking.deposit(2000)

 harrysChecking.withdraw(500)

 System.out.println(harryChecking.getBalance())

Methods

 Every method contains:

 An access specifier (usually public)

 The return type

◼ Void (no return)

◼ Type (int, double, String)

 Name of the method

 List of the parameters () or (something)

Methods

public void deposit(double amount)

{

method body

}

public void withdraw(double amount)

public double getBalance()

Contructors

 Contain instructions to initialize objects

 Resemble methods

 When you create an object the constructor is called

BankAccount harrysChecking = new BankAccount ();

BankAccount harrysChecking = new BankAccount (5000);

Constructor

 Difference between constructor and method

 Name of constructor is the same as the class

 Have not return type not even void

Creating Constructors

public class BankAccount
{

// Constructors
public BankAccount()
{
Fill in later
}
public BankAccount(double initialBalance)
{
Fill in later
}

}

Instance Field

 An object stores its data in instance fields

 Instance fields are the variables associated with the

object

 Field – storage location within a block of memory

 Instance – the object of the class

Instance Field

 Instance field declaration consists of:

 An access specifier (usually private)

 The type of the instance field

 Name of the instance field

Instance Field Declaration

public class BankAccount

{

…..

private double balance;

…..

}

Every object of BankAccount will have a field named
balance

What Does Private Mean

 Instance fields are hidden from the programmer who
uses the class

 They are only of concern to the programmer who
implement the class

 All access must occur through public methods not
instance fields

 The process of hiding data and providing methods
for data access is called encapsulation

Instance Fields

Access to Instance Fields

 Separate method

 Example: getBalance

 Returns the balance

 Can grant the user access to only get the balance the

not change the balance

 You control who has access to what

Implementing Constructors

 Constructors contain instructions to initialize the

instance fields of an object

public BankAccount()

{

balance = 0;

}

public BankAccount(double initialBalance)

{

balance = initialBalance;

}

Constructor Call Example

 Create a new object of type BankAccount

 Call the 2nd constructor (since the construction parameter

supplied matches the type of 2nd)

 Set the parameter variable initialBalance to 1000

 In the constructor the balance instance field of the newly

created object is set to initialBalance

BankAccount harrysChecking = new BankAccount(1000.0);

Constructor Call Example

 Return an object reference, that is, the memory location

of the object, as the value of the new expression

 Store that object reference in the harrysChecking

variable

BankAccount harrysChecking = new BankAccount(1000);

Instance Fields

1000.00

File BankAccount.java

01: /**

02: A bank account has a balance that can be changed by

03: deposits and withdrawals.

04: */

05: public class BankAccount

06: {

07: /**

08: Constructs a bank account with a zero balance.

09: */

10: public BankAccount()

11: {

12: balance = 0;

13: }

14:

15: /**

16: Constructs a bank account with a given balance.

17: @param initialBalance the initial balance

18: */
Continued…

File BankAccount.java

19: public BankAccount(double initialBalance)

20: {

21: balance = initialBalance;

22: }

23:

24: /**

25: Deposits money into the bank account.

26: @param amount the amount to deposit

27: */

28: public void deposit(double amount)

29: {

30: double newBalance = balance + amount;

31: balance = newBalance;

32: }

33:

34: /**

35: Withdraws money from the bank account.

36: @param amount the amount to withdraw
Continued…

File BankAccount.java

37: */

38: public void withdraw(double amount)

39: {

40: double newBalance = balance - amount;

41: balance = newBalance;

42: }

43:

44: /**

45: Gets the current balance of the bank account.

46: @return the current balance

47: */

48: public double getBalance()

49: {

50: return balance;

51: }

52:

53: private double balance;

54: }

Testing a Class

 We need to be sure our Class (in this case

BankAccount) works correctly

 Write a test case or tester class

 Construct one or more objects of the class that is being

tested

 Invoke one or more methods

 Print out one or more results

 Print the expected results

BankAccountTester.java

01: /**

02: A class to test the BankAccount class.

03: */

04: public class BankAccountTester

05: {

06: /**

07: Tests the methods of the BankAccount class.

08: @param args not used

09: */

10: public static void main(String[] args)

11: {

12: BankAccount harrysChecking = new BankAccount();

13: harrysChecking.deposit(2000);

14: harrysChecking.withdraw(500);

System.out.println(“Expected result: 1500”);

15: System.out.println(harrysChecking.getBalance());

16: }

17: }

Categories of Variables

 Categories of variables

 Instance fields (balance in BankAccount)

 Local variables (newBalance in deposit method)

 Parameter variables (amount in deposit method)

 An instance field belongs to an object

 The fields stay alive until no method uses the object any

longer

Categories of Variables

 Local & parameter variable

 Local variables must be initialized

 Parameter variables are initialized in the method call

 Instance fields that are numbers are initialized to

zero by default

 Object references are set to “null” by default

Categories of Variables

 In Java, the garbage collector periodically reclaims

objects when they are no longer used

 Local and parameter variables belong to a method

Lifetime of Variables

harrysChecking.deposit(500);

double newBalance = balance + amount;

balance = newBalance;

Continued…

Lifetime of Variables

Figure 7:

Lifetime of Variables Continued…

Lifetime of Variables

Figure 7:

Lifetime of Variables

Implicit and Explicit Method

Parameters

 The implicit parameter of a method is the object on which
the method is invoked

momsSavings.withdraw(500);

 Sometime you will see the word this used as a
reference and denotes the implicit parameter

Implicit parameter

Implicit and Explicit Method

Parameters

 Use of an instance field name in a method denotes

the instance field of the implicit parameter

public void withdraw(double amount)

{

double newBalance = balance - amount;

balance = newBalance;

}

Implicit and Explicit Method

Parameters

 balance is the balance of the object to the left of the dot:

means

double newBalance = momsSavings.balance - amount;

momsSavings.balance = newBalance;

momsSavings.withdraw(500)

Implicit Parameters and

this

 Every method has one implicit parameter

 The implicit parameter is always called this

 Exception: Static methods do not have an implicit

parameter (more later) – remember main (no object)

double newBalance = balance + amount;

// actually means

double newBalance = this.balance + amount;

Implicit Parameters and

this

Figure 8:

The Implicit Parameter of a Method Call

