IMPLEMENTING CLASSES

Black Box

Something that magically does its thing!

You know what it does but not how.

You really don’t care how.

Example — car

lts interaction with the outside world is know.

You know how to interface

Encapsulation

The hiding of unimportant details
Black box provides encapsulation
Somebody has to come up with the concept.

Software uses encapsulation to take complex routines
and form “black boxes”

Object-oriented programming

Black-boxes from which a program is manufactured are
called objects

We learn the interfaces and what they are to do but not how
they do it.

Abstraction

Taking away inessential features

Formal definition: the process of finding the essential
feature set for a building block of a program such
as a class

What we know

What it does
How to interface with it

What we don’t how

How it does it

Classes

Designer must understand the problem

Designer must understand the behavior of the class

Others can use the class

They don’t need to understand the workings

Must provide a means of interfacing with class

Example

We will use a bank account
We will call our class BankAccount

This example will be used through out the semester
and this book

What to Do

Design a BankAccount class that other programmers
can use (abstraction)
Find essential operations

Deposit money

Withdraw money

Get the current balance

Programmers who use class will view its objects as
black boxes

What To Do

Each operation == a method

Turn the essential operations into a method or o
black box

What To Do

Methods needed

public void deposit(double amount)
public void withdraw(double amount)

public double getBalance()
Which are accessors?

Which are mutatorse

What to Do

When we want to use one of the methods we must call

it.

Example of methods calls
harrysChecking.deposit(2000)
harrysChecking.withdraw(500)
System.out.printin(harryChecking.getBalance())

Methods

Every method contains:
An access specifier (usually public)

The return type

Void (no return)

Type (int, double, String)
Name of the method

List of the parameters () or (something)

Methods

public void deposit(double amount)

{

method body

}

public void withdraw(double amount)

public double getBalance()

Contructors

Contain instructions to initialize objects
Resemble methods

When you create an object the constructor is called

BankAccount harrysChecking = new BankAccount ();

BankAccount harrysChecking = new BankAccount (5000);

Constructor

Difference between constructor and method
Name of constructor is the same as the class

Have not return type not even void

Creating Constructors

public class BankAccount

{

// Constructors
public BankAccount()

{

Fill in later

}

public BankAccount(double initialBalance)

{

Fill in later

}

Instance Field

An object stores its data in instance fields

Instance fields are the variables associated with the
object

Field — storage location within a block of memory

Instance — the object of the class

Instance Field

Instance field declaration consists of:
An access specifier (usually private)
The type of the instance field

Name of the instance field

Instance Field Declaration

public class BankAccount

{

private double balance;

Every object of BankAccount will have a field named
balance

What Does Private Mean

Instance fields are hidden from the programmer who
uses the class

They are only of concern to the programmer who
implement the class

All access must occur through public methods not
instance fields

The process of hiding data and providing methods
for data access is called encapsulation

Instance Fields
S

Access to Instance Fields

Separate method

Example: getBalance
Returns the balance

Can grant the user access to only get the balance the
not change the balance

You control who has access to what

Implementing Constructors
R

1 Constructors contain instructions to initialize the
instance fields of an object

Constructor Call Example

BankAccount harrysChecking = new BankAccount (1000.0) ;

Create a new object of type BankAccount

Call the 2" constructor (since the construction parameter
supplied matches the type of 2"

Set the parameter variable initialBalance to 1000

In the constructor the balance instance field of the newly
created objectissetto 1niti1alBalance

Constructor Call Example
—

o1 Return an object reference, that is, the memory location
of the object, as the value of the new expression

o1 Store that object reference in the harrysChecking
variable

Instance Fields
S

File BankAccount. java

/**
A bank account has a balance that can be changed by
deposits and withdrawals.
*/
public class BankAccount
{
/**
Constructs a bank account with a zero balance.
*/
public BankAccount ()
{

balance = 0;

/**
Constructs a bank account with a given balance.
dparam initialBalance the initial balance

/

File BankAccount. java

public BankAccount (double initialBalance)

{

balance = initialBalance;

/**

Deposits money into the bank account.
@param amount the amount to deposit
*/

public void deposit (double amount)

{

double newBalance = balance + amount;
balance = newBalance;

/**

Withdraws money from the bank account.

@param amount the amount to withdraw .

File BankAccount. java

*/
public void withdraw (double amount)

{

double newBalance = balance - amount;
balance = newBRalance;

/**
Gets the current balance of the bank account.
@return the current balance

*/

public double getBalance ()

{

return balance;

private double balance;

Testing a Class

We need to be sure our Class (in this case
BankAccount) works correctly

Write a test case or tester class

Construct one or more objects of the class that is being
tested

Invoke one or more methods
Print out one or more results

Print the expected results

BankAccountTester. java

/**
A class to test the BankAccount class.
*/
public class BankAccountTester
{
/**
Tests the methods of the BankAccount class.
@param args not used
*/
public static void main (String[] args)
{

BankAccount harrysChecking = new BankAccount();
harrysChecking.deposit (2000) ;
harrysChecking.withdraw (500) ;
System.out.println (“Expected result: 1500”);

System.out.println (harrysChecking.getBalance()) ;

Categories of Variables

Categories of variables
Instance fields (lbalance in BankAccount)
Local variables (newBalance in deposit method)

Parameter variables (amount in deposit method)

An instance field belongs to an object

The fields stay alive until no method uses the object any
longer

Categories of Variables

Local & parameter variable
Local variables must be initialized

Parameter variables are initialized in the method call

Instance fields that are numbers are initialized to
zero by default

Object references are set to “null” by default

Categories of Variables

In Java, the garbage collector periodically reclaims
objects when they are no longer used

Local and parameter variables belong to a method

Lifetime of Variables

Continued...

Lifetime of Variables
I

Before method call

amount = 500

Method called; parameter variable initialized

Figure 7:

Lifetime of Variables Continued...

Lifetime of Variables

harrysChecking = S

newBalance = 500

(AU LAUA. e .;
riIanlie inkianzed
L RN T DS A

harrysChecking =

Figure 7:
Lifetime of Variables

Implicit and Explicit Method
Parameters

The implicit parameter of a method is the object on which
the method is invoked

momsSavings.withdraw(500);

/

Implicit parameter

Sometime you will see the word this used as a
reference and denotes the implicit parameter

Implicit and Explicit Method

Parameters
I

1 Use of an instance field name in a method denotes

the instance field of the implicit parameter

Implicit and Explicit Method

Parameters
I

O

Implicit Parameters and

~__this .
T

-1 Every method has one implicit parameter

01 The implicit parameter is always called this

11 Exception: Static methods do not have an implicit
parameter (more later) — remember main (no object)

Implicit Parameters and
this

momsSavings =

this =

amount = 500

