MAKING DECISIONS

Chapter 2

IF Statement

\square If Statements are used to choose between actions

\square A condition is a Boolean expression
\square When executed, the condition is evaluated

- If the condition is true, control flows along the true arrow
- If the condition is false, control flows along the false arrow
\square The IF statement ends where the true and false branches reconnect

Relational Operations

Operator	Description	Fxpression	Result (X $=2, \mathrm{Y}=3)$
$=$	Equal	$\mathrm{X}=2$ $\mathrm{X}=\mathrm{Y}$	True False
$<>$	Not Equal	$\mathrm{Y}<>5$ $\mathrm{Y}<>3$	True False
$>$	Greater than	$\mathrm{X}>1$ $\mathrm{X}>\mathrm{Y}$	True
False			

Java will handle Equal and Not Equal differently

A Simple IF Statement

Weekly Paycheck with Overtime Example

Nested IF Statements

\square IF statement contained within the true or false branch of another IF statement
\square It can contain any number of if statements
\square Example
If you are at UTC
If you are a student
You have a schedule

Long-Distance Billing Example

Test Two Numbers (Class Exercise)

\square Read 2 numbers and determine if they are equal or one is greater than the other. If the values are equal print a message saying they are equal. If not, print a message saying which one is largest.

Compound Conditions

\square Conditions with multiple comparisons
\square Consists of two conditions within parentheses joined by a logical operator
\square NOT
\square AND
$\square O R$
$\square \mathrm{XOR}$

Logical Operations

Operator	Description
NOT	Returns the opposite of the condition
AND	Returns TRUE if and only if both conditions are TRUE
OR	Returns TRUE if at least one of the conditions is TRUE
XOR	Returns TRUE if the conditions have opposite values

Check on Compound Conditions

\square Evaluate each of the following compound conditions. Assume $X=3$ and $Y=7$. Your answer should be true or false.

$$
\begin{array}{ll}
\text { 1. } & (x=1) \text { AND }(Y=7) \\
\text { 2. } & (X=1) \text { OR }(Y=7) \\
\text { 3. } & (X<Y) \text { AND }(Y>10) \\
\text { 4. } & \left(X^{\wedge} 3=27\right) \text { AND }(Y \text { MOD 2 }=1) \\
\text { 5. } & \left(X^{\wedge} 3=27\right) \text { OR }(Y \text { MOD 2 }=1) \\
\text { 6. } & (X=3) \operatorname{XOR}(Y \operatorname{Mod} 2=1) \\
\text { 7. } & (X=1) \operatorname{XOR}(Y=7)
\end{array}
$$

Compound Condition Solution for Long-Distance Billing Example

Question

\odot Can we write $(\mathrm{A}<\mathrm{B}<\mathrm{C})$?
๑NO!!

- You need to have explicit tests $(A<B)$ and $(B<C)$
- Join together with AND
- Put each test in a parentheses

Example of Finding the Smallest Number

\square Smallest Number- Four Solutions
\square Solution 1-Nested Conditions
\square Solution 2- Compound Conditions
\square Solution 3- Nested and Compound Conditions
\square Solution 4- Placeholder Variable

Solution l- Example

Solution 2- Example

Solution 3- Example

Solution 4- Example

Smallest of Five

\square Write a program that displays the smallest of five input values that may include duplicate values.

