
Lab 11: Recursion

Due: 11/14/12 11:59PM

You will design 4 recursive static methods dealing with ArrayList<Integer> objects. Put them in a
class called Recursive.

For add and print, note that the public method is not the recursive one. It calls a recursive helper function
that uses an int index parameter to avoid having to copy the ArrayList multiple times.

Note: Do not use any for or while loops.

Remember, each recursive method needs a recursive call on a smaller input, and a non-recursive base case.
The trick is to assume that the recursive call works! Get buildList and printList to work first – test
those.

class Recursive
{

// this one builds a list containing values from 1 to n
public static ArrayList<Integer> buildList(int n)
{

// write this in terms of a recursive call using a smaller n
}

// this one reverses a list in-place
public static void reverse(ArrayList<Integer> lst)
{

// write this in terms of a recursive call using a smaller lst
}

// return the sum of all Integers in the ArrayList
// this should not change the lst argument
public static Integer add(ArrayList<Integer> lst)
{

return add(lst,0);
}

// Print out all the contents of the argument
// this should not change the lst argument



public static void print(ArrayList<Integer> lst)
{

print(lst,0);
return;

}

private static Integer add (ArrayList<Integer> lst, int index)
{

// think of the input is the inclusive sublist of elements from index
// to lst.size(). make this sublist shorter in the recursive call
// by incrementing index

}

private static void print (ArrayList<Integer> lst, int index)
{

// write this in the same way as add, above
}

}

A driver class for this code might look like this:

class driver
{

public static void main(String[] args)
{

ArrayList<Integer> lst = Recursive.buildList(5);
Recursive.print(lst);
System.out.println("+---");
System.out.println(Recursive.add(lst));

}
}

Turn In

Put all java files in a directory named YourName_1110_lab11, zip it up and submit the zip file to
blackboard.

2


