Interrelationships among Factors Associated with Injury Risk among College Football Players Mattea K. Butler, MS, ATC; Hillary M. Masdon, MS, ATC; Gary B. Wilkerson, EdD, ATC; Marisa A. Colston, PhD, ATC

BACKGROUND AND PURPOSE

- Football players sustain an estimated 1.2 million injuries per year, ~ 50% being sprains and strains¹
- Reaction time (RT) is an important component of neuromuscular responsiveness and injury susceptibility Slow RT has been associated with core and lower extremity (Core/LE) sprains and strains²
- Visuomotor RT may represent a somewhat different performance capability from neurocognitive RT
- · Complex motor response to visual stimulus vs. simple motor response (e.g., mouse click) to cognitive challenge
- Other important factors may include postural stability, anthropometric characteristics, and previous injury³
- The purpose of this study was to identify pre-participation characteristics that correspond to elevated core and lower extremity injury risk among college football players

PARTICIPANT CHARACTERISTICS AND PROCEDURES

- 89 NCAA Division I-FCS football athletes: Mass101.11 ±18.82 kg, Height 1.85 ± .06 m
- Potential injury predictors guantified prior to first practice session (some athletes unavailable for every test)
- · Visuomotor RT (VMRT) quantified by LED display board (Dynavision International, West Chester, OH) · Proactive test mode; 60-s test, 3 trials
- · Composite neurocognitive RT (NCRT) values derived from computerized test (ImPACT, Pittsburgh, PA)
- Unilateral postural stability quantified by electronic tablet application (Sway Balance, Sway Medical, Tulsa, OK) · 60-s test of ability to minimize postural sway with 45° knee flexion and 2.5 cm of heel elevation
 - Standard deviation of rate of change in body mass acceleration (m/s³) within each plane of motion
 - Anterior-Posterior (A-P), Medial-Lateral (M-L), and Superior-Inferior (S-I)
- Estimated mass moment of inertia (MMOI) and body mass index (BMI) derived from height and weight values History (Hx) of previous Core/LE sprain or strain within the past 2 years derived from medical records
- Electronic injury documentation system used for injury surveillance throughout sport season
 - Injury defined as acute Core/LE sprain or strain requiring evaluation and treatment, within 2 categories:
 - 1) Any degree of activity modification (partial restriction or complete restriction of sport-related activity) 2) Complete restriction of activity for \geq 1 practice session or game (time-loss)
- Data analysis procedures for assessment of association between potential predictors and injury occurrence
- · Receiver operating characteristic (ROC) analysis used to identify cut-points for dichotomization of variables
- · Logistic regression analyses utilized to develop prediction models
- · Cox regression analyses utilized to assess the hazard imposed by risk factors in relation to exposure time

RESULTS

- Univariable analyses indentified factors associated with injury occurrence for the 2 injury definitions (Tables 1 & 2)
- VMRT demonstrated strong association with Core/LE injury occurrence (both definitions)
- Missing data for 37 cases prohibited VMRT inclusion in multivariable prediction models
- Logistic regression analyses identified best predictor sets for both injury definitions (Tables 3-6)
- Starter, Core/LE Hx, Sway A-P included in 3-Factor prediction model for all Core/LE sprains and strains (Table 7) · Group mean value for Sway A-P used to compensate for 6 cases of missing data
- · Concussion Hx and Core/LE Hx included in 2-Factor prediction models for Time-Loss Core/LE sprains and strains
- Both factors positive vielded high specificity, but low sensitivity (Table 8)
- · Either factor or both factors positive yielded high sensitivity, but low specificity (Table 9)
- Cumulative hazard for high-risk vs. low-risk players differed over the course of the season (Figures 1-3)

Table 1 Core/L	able 1 Core/LE Sprains & Strains Table 2 Time-Loss Core/LE Sprains & Str					orains & Stra	& Strains		
Predictor	n	Cut-Point	Odds Ratio	P-value	Predictor	n	Cut-Point	Odds Ratio	P-value
Sway A-P	89	.024	4.75	.006	Core/LE Hx	89	-/+	24.76	<.001
VMRT (ms)	52	743	3.60	.037	VMRT (ms)	52	743	3.93	.045
Core/LE Hx	89	-/+	3.10	.009	Concussion Hx	89	-/+	3.74	.012
Concussion Hx	89	-/+	2.48	.065	Starter	89	-/+	1.66	.201
Starter	89	-/+	2.44	.028	Sway A-P*	89	-	-	-
NCRT (ms)	86	655	2.00	.136	NCRT (ms)*	86	-	-	-
* No association	with i	niurv occurr	ence		-		•		

Table 3 Core/LE Sprains & Strains				Table 4 Time-Loss Core/LE Sprains & Strains			
Predictor	Cut-Point	Odds Ratio	Hazard Ratio	Predictor	Cut-Point	Odds Ratio	Hazard Rati
Sway A-P	.240	9.53*	5.68	Core/LE Hx	-/+	21.58	12.69
Core/LE Hx	-/+	4.08*	3.07	Concussion Hx	-/+	1.68	1.67
Starter	-/+	3.58*	2.21	2- Factor Model	≥1	20.04	12.84
3-Factor Model	≥ 2	4.99	3.46	2- Factor Model	Both +	5.93	3.91
* Logistic regres	sion multiva	riable adjuste	d OR	•			

Table 5 Core	e/LE Sprains	& Strains		Table 6 Time-Loss Core/LE Sprains & Strain			
Risk Factors	Injury	No Injury	Incidence	Risk Factors	Injury	No Injury	Incidence
0	0	6	0.0%	0	2	37	5.1%
1	9	25	26.5%	1	15	18	45.5%
2	18	19	48.6%	2	11	6	64.7%
3	11	1	91.7%	Total	28	61	31.5%
Total	38	51	42.7%	. <u>.</u>			

THE UNIVERSITY of TENNESSEE CHATTANOOGA

2-Factor Time-Loss Model

Injury

11

17

Table 8

Factors

Both +

0 or 1

Total

Table 7						
3-Factor Model						
Factors	Injury	No Injury				
≥2	29	20				
0 or 1	9	31				
Total	38	51				
Fisher's exact p <.001						
Sensitivity 76% Specificity 61%						
OR = 4.99 (90% CI: 2.28 – 10.95)						
Figure 1						

No Injury

6

55

2-Factor Time-Loss Model

Injury

26

2

28

Fisher's exact p <.001

OR = 20.04

(90% CI: 5.56 - 72.20)

No Injury

24

37

61

able 9

actors

≥ 1

0

CLINICAL RELEVANCE

- Pre-season screening of various attributes can quantify the injury risk level of individual college football players
- · Core/LE sprain or strain was 5 X more likely among players who exhibited any 2 of 3 risk factors
- Time-Loss Core/LE sprain or strain was 20 X more likely among players who exhibited either 1 of 2 risk factors
- · High-risk players exhibited greater injury hazard than low-risk players over the course of the 19-week season
- · Greater number of injuries sustained earlier in season among high-risk vs. low-risk players
- · History of concussion and/or Core/LE sprain or strain may relate to slow VMRT and/or impaired postural stability
- Individualized training that targets deficiencies in neuromuscular responsiveness may reduce injury risk

REFERENCES

- 1. Shankar PR, et al. Epidemiology of high school and collegiate football injuries in the United States, 2005-2006. Am J Sports Med. 2007:35:1295-1303
- 2. Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17:4-9.
- 3. Zazulak BT, et al. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35:1123-1130.