Assessment and Training of Dynamic Stabilization of the Lumbopelvic-Hip Complex

Kyle R. Morey, MS, ATC; Rachael E. McGrail, MS, ATC; Elisa C. Tanksley, MS, ATC; Gary B. Wilkerson, EdD, ATC; Marisa A. Colston, PhD, ATC; Joe LaCaze, DC

BACKGROUND AND PURPOSE

- Antagonist imbalances in strength and flexibility alter joint alignment and can increase susceptibility to injury¹
- Neuromuscular control (NMC) of the lumbopelvic-hip complex (LPHC) has been linked to injury risk²
- Current assessment methods for postural alignment focus on muscular factors and ignore the neural component³
- Improved NMC of the LPHC can be expected to improve dynamic stability of the lower extremity joints⁴
- Isometric contractions have been shown to alter muscle activation patterns without concomitant strength training⁵
- Adaptations within the central nervous system appear to modulate reflexive antagonist activation levels⁵
- The purposes of this study were to evaluate the effectiveness of the ROTEX™ device for identification of suboptimal antagonist balance and its potential value for improvement of LPHC function

RESULTS

Mean ± standard deviation for pre- and post-intervention measurements presented in Table 1

- AROM IR, PROM IR, and PROM ER increased significantly after the intervention (Figures 4 & 5)
 - Change in AROM IR from pre- to post-intervention: +2.17°; p<.001; ES=.373; n²=.360
 - No significant change in AROM ER from pre- to post-intervention: p=.968
 - Change in PROM IR from pre- to post-intervention: +1.68°; p=.029; ES=.248; η²=.126
 - Change in PROM ER from pre- to post-intervention: +1.69°; p=.028; ES=.242; n²=.126
- Average pelvic displacement decreased in sagittal plane (AP) during walk after intervention (Figure 6)
 - Change in AP displacement from pre- to post-intervention: -1.44°; p=.059; ES=.478; n²=.114
 - · No significant change in RL displacement from pre- to post-intervention: p=.906

Figure 1: ROTEX™ device Figure		e 2: Side-view of protocol	Figure 3: Front-view of protocol	
Table 1	Pre-Intervention	Post-Intervention	F	р
AROM IR	29.48 ±5.82	31.65 ±4.80	20.23	<.001
AROM ER	38.70 ±7.81	38.75 ±7.71	<0.01	.968
PROM IR	39.37 ±6.78	41.05 ±7.57	5.20	.029
PROM ER	49.06 ±6.99	50.75 ±7.08	5.21	.028
Mean AP Walk	-5.22 ±3.01	-3.78 ±3.45	3.86	.059
Mean RL Walk	-8.30 ±1.53	-7.90 ±1.58	0.01	.906

CLINICAL RELEVANCE

Bilateral isometric contractions of the hip internal rotators with posterior pelvic tilt appear to have beneficial effects

- Our results support the existence of an association between hip ROM and dynamic pelvic stability
- · An optimal range of hip IR and ER may reduce the magnitude of AP pelvic displacements during gait
- A plausible explanation for our findings is alteration of relative activation levels of antagonist hip muscle groups
 - · Decreased muscle tension resistance may explain the post-intervention increase in hip motion
 - · Alternatively, the hip motion increase may have been due to improved flexibility of static restraints
- More research is needed to clarify neuromechanical aspects of optimal LPHC function:
 - · The possible effect of isometric contractions on muscle activation levels
 - · Interdependencies among displacements of the lumbar spine, pelvis, and hip joints
 - · The possible influence of suboptimal LPHC function on core and lower extremity injury risk

REFERENCES

- Barwick A. Smith J. Chuter V. The relationship between foot motion and lumbopelvic-hip function: a review of the literature. Foot. 2012;22(3):224-231.
- Frank B, Bell DR, Norcross MF, Blackburn JT, Goerger BM, Padua DA. Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants. Am J Sports Med. 2013;41(11): 2676-2683.
- Hodges P, Moseley G. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol. 2003;13(4):361-370.
- 4. Cobb S, Bazett-Jones D, Joshi M, Earl-Boehm J, James C. The relationship among foot posture, core and lower extremity muscle function, and postural stability. J Athl Train, 2014:49(2):173-180.
- Rio E, Kidgell D, Purdam C, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015: doi:10.1136/bisports-2014-094386.

PARTICIPANTS AND PROCEDURES

- 37 NCAA Division I athletes: 19.6 ±1.2 years: volleyball, women's soccer, wrestling, men's golf, women's golf
 - 22 male, 73.46 ±12.20 kg, 173.64 ±8.82 cm and 15 female, 63.70 ±5.65 kg, 172.38 ±7.43 cm
- Measurements acquired before and after an exercise intervention designed to enhance dynamic pelvic stability
- · Hip internal rotation (IR) and external rotation (ER) measured
 - Passive and active range of motion; Baseline® digital inclinometer (DJO Global, Vista, CA)
- · Pelvic displacements measured by Level Belt Pro application (Perfect Practice Inc., Columbus, OH) · iPod positioned at level of PSIS to record Anterior/Posterior (AP) and Right/Left (RL) pelvic tilt
- Intervention protocol involved serial hip IR isometric contractions with pelvis maintained in posterior tilt
 - ROTEX™ device (ROTEXMotion, Opelousas, LA) protocol involved progressive increases in hip IR
 - Back and shoulders against wall with feet positioned at center of rotating discs (Figures 1-3)
 - Posterior pelvic tilt in ~5-10° knee flexion and maximum hip IR during 10-s isometric contraction
 - Posterior pelvic tilt maintained with further increase of active hip IR for 10-s: repeated twice
 - Total of 3 isometric contractions for 30-s duration of intervention
- Repeated measures ANOVA; α ≤ .05; (> .05 to ≤ .10 interpreted as borderline statistical significance)
 - No Bonferroni correction for multiple comparisons (exploratory analysis)
 - Hip ROM (IR and ER); passive and active (average of 3 measurements)
 - · Mean pelvic position during 10-m walk; sagittal plane AP and frontal plane RL

