Perception-Action Coupling Assessment and Training in ROTC Cadets

Alexis M Williams, MS, ATC; Madeline E Johnson, MS, ATC; Hunter L Amos, MS, ATC; Gary B Wilkerson, EdD, ATC; Shelle N Acocello, PhD, ATC

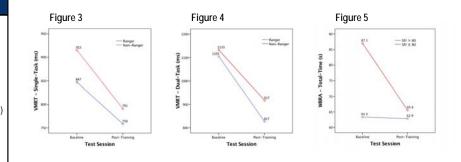
BACKGROUND AND PURPOSE

- Musculoskeletal injuries are sustained by 600,000 soldiers each year, resulting in >2.2 million medical encounters¹
- An estimated 68,000 soldiers per year are unable to deploy as a result of musculoskeletal injuries²
- Force readiness is directly impacted, and consequently, national defense capabilities³
- Perception-action coupling specifically refers to responsiveness to rapidly changing environmental stimuli⁴
 Definition and viewal activity activity and viewal activity activ
- Deficiencies in cognitive and visual-motor processes may expose healthy service members to elevated injury risk
 Dual-task assessment and training appear to offer potential for risk reduction and performance enhancement⁵
- The purposes of this study were to identify perception-action coupling associations with elite warrior status and sub-optimal functional status, and to assess the extent to which visual-motor training could enhance capabilities.

PARTICIPANTS & PROCEDURES

- · Baseline testing included different assessments of visual, cognitive, and motor abilities of 42 ROTC cadets
- 5 cases excluded due to incomplete data and 2 cases excluded due to abnormal test results (>2 SD below mean)
 Analysis limited to 35 cases (20.5 ±3.1 yrs; 69.6 ±3.5 cm; 174.0 ±32.2 kg); Ranger (n=15); Non-Ranger (n=20)
- 10-item Sports Fitness Index (SFI) used to obtain self-ratings of persisting effects of previous injuries
- Visual-motor reaction time (VMRT) assessed and trained with Dynavision D2 System™ (West Chester, OH)
- 60-s single-task (ST) test and 60-s dual-task (DT) test (VMRT with simultaneous performance of flanker test)
- Verbal responses to indicate direction of center arrow of 5-arrow flanker displays on LCD screen (Figure 1)
- Whole-body reactive agility (WBRA) assessed by TRAZER® Sports Simulator (Trag Global Ltd, Westlake, OH)
- 20 lateral movements (0.9 m) in response to virtual reality targets (10 in each direction; random order)
 Reaction time (RT) for whole-body target responses; total time (TT) elapsed for test completion (Figure 2)
- Dual-task VMRT training performed 2X per week for 6 weeks; various secondary cognitive tasks presented
- Training sessions with description of secondary cognitive tasks performed presented in Table 1
- Post-training assessment of VMRT and WBRA involved same tests and procedures administered prior to training
 Corruption of WBRA test data for 2 cases required imputation of cohort mean value for WBTT
- Statistical analyses focused on baseline discrimination between cadet subgroups and performance improvements
- Ranger vs. Non-Ranger status and Suboptimal vs. Optimal Function (≤ vs. > SFI median score)
- Receiver operating characteristic analysis, logistic regression, and repeated measures analysis of variance

RESULTS


- Prediction of Ranger status from baseline data yielded 3-factor model; x²(3) = 17.22; P = .001 (Table 2)
 Hosmer & Lemeshow goodness-of-fit x²(4) = 1.33; P = .856; Nagelkerke R² = .522
- Prediction of Ranger status from post-training data yielded 2-factor model; χ²(2) = 14.81; P = .001 (Table 3)
 Hosmer & Lemeshow goodness-of-fit χ²(2) = 1.63; P = .444; Nagelkerke R² = .463
- Prediction of Optimal Function (SFI > 80; baseline data) yielded 2-factor model; χ²(2) = 16.64; P <.001 (Table 4)
 Hosmer & Lemeshow goodness-of-fit χ²(2) = 0.53; P = .767; Nagelkerke R² = .506
- Baseline to post-training change in VMRT-ST and VMRT-DT depicted for Rangers vs. Non-Rangers (Figures 3 & 4)
- VMRT-ST trials difference: F_{1,33} = 40.21; P <.001; VMRT-DT trials difference: F_{1,33} = 52.79; P <.001
- Baseline to post-training change in WBRA-TT depicted for Optimal vs Suboptimal Function (Figure 5)
- WBRA-TT group X trial interaction: F_{1,33} = 4.98; P = .032

Predictor	Cut-Point	AUC	P-Value ⁶	Sensitivity	Specificity	OR (CLL _{am})	Adj OR (CLL ₂₀
Wera-TT	≤60 s	.\$70	.005	47%	95%	16.63 (2.51)	22.78 (2.58)
DASS	≤ 17	.585	.049	87%	45%	5.32 (1.25)	10.75 (1.28)
VMRT-ST	≤ 899 ms	.683	.039	80%	55%	4.69 (1.34)	6.06 (1.13)
WERART	≤ 660 ms	.523	.144	87%	35%	3.50 (0.81)	-
VNRT-DT	≤ 1110 me	.523	.228	T3%	45%	225 (0.67)	-
3-Faster Model	≥2	349	.881	37%	78%	15.17 (3.49)	-

Table 3. Results of Univariable & Multivariable Analyses – Prediction of Elite Warrior Status (Post-Training)							
Predictor	Cat/Paint	AUC	P-Value*	Sansilivity	Specificity	OR (CLL _{PSS})	Adj OR (CLL _{PES})
VMRT-DT	≤ 825 ms	.756	.002	73%	80%	11.00 (2.91)	8.49 (2.03)
WERA-TT	≤60.≰	.723	.807	59%	90%	10.29 (2.51)	7.35 (1.41)
DASS	≤17	.585	.049	87%	45%	5.32 (1.25)	_
WMRT-ST	≤765 ms	.642	.825	73%	65%	5.11 (1.49)	-
WBRA-RT	≤668 ms	<i>\$</i> 72	.091	75%	55%	3.36 (1.00)	-
2-Fector Nedel	Both +	.020	.004	87%	79%	8.33 (2.47)	-
* Fisher's Exect One-Sided Test							

Predictor	Cut-Paint	AUC	P-Value*	Sansitivity	Specificity	OR (CLL _{SER})	Adj OR (CLL _{SSS})
Wera-TT	≤66 s	.760	.002	79%	75%	11.25(2.99)	13.46 (2.88)
VMRT-ST	≤\$\$5788	.625	.913	90%	58%	8.58 (1.84)	10.76 (1.81)
DASS	≤17	.645	.030	47%	88%	6.28 (1.A7)	-
VMRT-DT	≤ 1110 mes	.625	.942	59%	81%	4.82 (1.32)	-
2-Factor Model	Both +	.635	.011	68%	88%	15.17 (3.49)	_

THE UNIVERSITY of TENNESSEE

CLINICAL RELEVANCE

- Screening of perception-action coupling ability is valuable for identification of persisting effects of previous injuries
 WBRA-TT and VMRT-ST demonstrated strongest power for discrimination between low versus high function
- Military personal are frequently required to perform demanding cognitive and physical tasks simultaneously
- WBRA-TT and VMRT-ST demonstrated strongest power for discrimination between Ranger versus Non-Ranger
 Self-reported low levels of depression, anxiety, and stress provided further characterization of Ranger status
- Dual-task VMRT training clearly resulted in improved perception-action coupling ability, including WBRA-TT
- After training, VMRT-DT and WBRA-TT were strongest discriminators for Ranger versus Non-Ranger status
 Both groups demonstrated substantial improvement in VMRT-DT, but Rangers improved to greater extent
- Low-function cases (SFI ≤ 80) demonstrated major WBRA-TT improvement following VMRT-DT training
- ROTC programs should consider baseline screening and dual-task visual-motor training as a strategy to optimize perception-action capabilities that are highly relevant to both injury prevention and elite military performance

REFERENCES

- Nindl B, Williams T, Deuster P, Butler N, Jones B. Strategies for optimizing military physical readiness and preventing musculo-skeletal injuries in the 21st century. US Army Med Dep J. October-December 2013:5-23.
- 2. Sample D. Army wants more soldiers back on deployable status. US Army website. https://www.army.mil/article/ 67037/ Army_wants_more_Soldiers_back_on_deployable _status. Accessed March 27th, 2018
- Teyhen D, Bergeron MF, Deuster P, et al. Consortium for Health and Military Performance and American College of Sports Medicine Summit. *Curr Sports Med Rep.* 2014;13(1):52-63.
- Farrow D, Abernathy B. Do expertise and the degree of perception-action coupling affect natural anticipatory performance? *Perception*. 2003;32(9):1127-1139.
- Fischer MV, Stone J, Hawkes TD, Eveland E, Strange AJ. Integrative physical and cognitive training development to better meet airmen mission requirements. *Procedia Manur.* 2015;3:1580-1586.