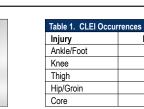
Association of Visual-Cognitive-Motor Integration with Core and Lower Extremity Injury in College Football Veronica A. Bridges MS, ATC; Katherine E. Rogers MS, ATC; Quentin W. Johnson MS, ATC; Austin T. Albright MS, ATC; Shellie N. Acocello PhD, ATC; Gary B. Wilkerson EdD, ATC

BACKGROUND AND PURPOSE

RESULTS


 Both mild traumatic brain injury (mTBI) and musculoskeletal injury clearly elevate risk for long-term disability among football players¹ Recent research has linked mTBI to substantially increased risk for sport-related musculoskeletal injuries upon return to sport² Subtle impairment of brain sensorimotor control processes may adversely affect responses to potentially injurious events • The majority of college football injuries are lower extremity sprains and strains (55-60%),³ which often result in recurrent injuries Core (lumbopelvic and abdominal structures) and lower extremity (LE) injuries have been documented to have shared risk factors⁴ · High volume of game participation, Core or LE injury history (CLEI Hx), and mTBI Hx are major factors influencing CLEI risk Previous research has established visuomotor (VM) and whole-body (WB) reactive metrics as potentially modifiable factors⁵ Optimal VM and WB reactive performance capabilities may offset other well-established CLEI risk factors that are not modifiable • 6.6 X greater injury rate during games compared to practice sessions makes volume of game exposure a primary risk factor³ The purposes of this study were to assess pre-participation VM and WB reactive performance metrics, player attributes, and subsequent CLEI associations, and the extent to which reactive training may reduce CLEI risk among college football players

PARTICIPANTS & PROCEDURES

• 52 Division I-FCS football players who participated throughout an 11-game season completed pre-participation performance tests • 20.1 ±4.2 yrs, 186.3 ±5.3 cm, 104.2 ±16.3 kg; complete pre- and post-training assessment data available for 48 of the 52 players Single-task (ST) and dual-task (DT) VM reaction time (RT) quantified by Dynavision D2[™] 60-s tests (Figure 1) • Buttons illuminated until hit; 60-s ST practice trial and 60-s ST test trial, followed by two different 60-s DT trials (A & B) A: Flanker test – center arrow direction verbal responses (<<<<, >>>>, >>>>, <>>>, >>>>, >>>>, 20 LCD displays (DT-A) • B: Flanker test - center arrow direction motor responses (<<<<<, >>>>, ><>>>, <<><>); 48 LCD displays (DT-B) • WB reactive agility (RA) guantified by TRAZER® 20-target lateral side-shuffle and 12-target diagonal movements (Figure 2) · Movements guided by randomized target appearances on monitor, which disappeared when contacted by avatar Metrics included Reaction Time (RT), Acceleration (Acc), Deceleration (Dec), Speed (Spd), and Asymmetry (Asym) · CLEI documented from initiation of pre-season practice sessions through end of 11-game season · CLEI defined as any sprain or strain that resulted in evaluation and treatment, regardless of whether or not time loss occurred · Cases of fracture, dislocation, contusion, laceration excluded from analysis, as well as any overuse condition Receiver operating characteristic (ROC) analysis used to define optimal cut-point for each potential predictor variable · Cross-tabulation and logistic regression analysis used to quantify associations with CLEI represented by odds ratio (OR) Training activity conducted over a 7-week period, which consisted of 60-s VMRT DT-A and WBRA trials 1-3 times per week Between pre- and post-training assessments: median of 11 sessions completed by 48 players (range 3-13 sessions)

• 51 CLEI among 52 players between start of practices until end of season; ≥ 1 documented for 50% (26/52) of players (Table 1) • ROC and cross-tabulation analyses identified 7 variables associated with CLEI; logistic regression yielded 5-factor model (Table 2) Adjusted OR values for backward elimination process: Step A. included all 7 variables; Step B. retained 5 strongest variables • 5-factor model $\chi^2(5) = 30.03$; $P \le .001$; Hosmer & Lemeshow goodness-of-fit $\chi^2(8) = 5.08$; P = .749; Nagelkerke R² = .586 • Beta weights: Starter 3.07, CLEI Hx 2.10, mTBI Hx 1.56, WB Diagonal-Back (D/B) Acc 2.72, WB Diagonal (Diag) Time 2.78 5-factor Beta Sum ≥ 4.38: 91% Positive Predictive Value; 24% Negative Predictive Value; OR = 33.00 (90% CI: 8.05, 135.31) Interaction evident between non-modifiable risk factors (Starter, CLEI Hx, and mTBI Hx) and WB Diag Time (Figures 3-5) Pre-participation training improvement in WB Diag Time and WB D/B Acc were associated with avoidance of CLEI (48 cases) • Failure to improve WB Diag Time ≥ 6 sec: 58% Sensitivity; 67% Specificity; OR = 2.80 (90% CI: 1.05, 7.50) Failure to improve WB D/B Acc to any extent: 96% Sensitivity; 21% Specificity; OR = 6.05 (90% CI: 0.93, 39.37) Failure to improve for Both WB Diag Time + WB D/B Acc: 53% Positive Predictive Value: 100% Negative Predictive Value • Effect of Both vs. 0 or only 1 improved on injury incidence: Starter vs. Non-Starter (Figure 6); CLEI Hx vs. No CLEI Hx (Figure 7) Cox regression analysis of binary risk categorization (5-factor Beta Sum ≥ 4.38) demonstrated significant Hi vs. Lo Risk difference • χ²(1) = 30.13; P ≤ .001; HR = 8.54 (90% CI: 4.06, 17.97); instantaneous hazard for injury occurrence differed over time (Figure 8)

Number

20

11

3

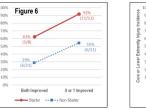
12

5

Table 2 Results of Univariable and Multivariable A

Variable	Cut-Point	AUC	Sensitivity	Specificity	OR	P-value*	Adj OR - A	Adj OR - B
Starter	≥ 2 games	.661	57	83	6.67	.003	20.79	21.46
CLEI Hx	Yes/No	-	65	72	3.60	.002	5.74	8.17
mTBI Hx	Yes/No	-	41	69	1.57	.248	5.19	4.74
WBRT Lat	≥ 483 ms	.555	36	88	3.89	.050	3.00	t
VMRT (ST)	≥ 765 ms	.516	43	71	1.82	.232	1.92	t
WB D/B Acc	≤ 2.26 m/s ²	.600	21	96	6.27	.076	10.26	15.10
WB Diag Time	≥ 68 s	.631	57	75	4.00	.019	11.05	10.85
Beta Sum	4.38	.763	75	92	33.00	<.001	-	-

* Fischer's exact 1-sided test [†] Variable eliminated by backward stepwise logistic regression analysis


THE UNIVERSITY of TENNESSEE CHATTANOOGA

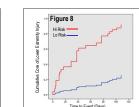

Figure 4

Figure 7

CLINICAL RELEVANCE

· Consistent with the findings of previous research, 3 non-modifiable factors had the strongest prospective associations with CLEI • Interactions among both modifiable and non-modifiable factors highlight the importance of individualized risk profile assessment · Greatest potential for CLEI risk reduction appears to be training for improvement of whole-body visual-cognitive-motor integration Slow WBRA Diag Total Time and slow D/B Acc may relate to slow neural processing and/or impaired visual-spatial awareness WBRA diagonal movement pattern testing may replicate critical performance capabilities relevant to CLEI avoidance in football Pre-participation WBRA training adaptations were associated with the probability for subsequent occurrence of CLEI

Analysis of time to first CLEI occurrence provided exceptionally strong validation of 5-factor risk model over duration of football season, which clearly supports the potential value of properly designed risk screening tests and targeted training for risk reduction

REFERENCES

1. Pietrosimone B, et al. Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc. 2015;47(11):2366-2372. 2. Krill ML, et al. Effect of concussions on lower extremity injury rate at a Division I collegiate football program. Orthop J Sports Med. 2018; 6(8): DOI: 10 1177/2325967118790552

3. Kerr ZY, et al. The first decade of web-based sports injury surveillance: descriptive epidemiology of injuries in United States high school football (2005-2006 through 2013–2014) and National Collegiate Athletic Association football (2004–2005 through 2013–2014). J Athl Train, 2018;53(8):738-751. . Wilkerson GB, Colston MA. A refined prediction model for core and lower extremity sprains and strains among collegiate football players. J Athl Train. 2015:50(6):643-650

. Wilkerson GB, et al. Detection of persisting concussion effects on neuromechanical responsiveness. Med Sci Sports Exerc. 2018;50(9):1750-1756.