Quantification of Ankle Sprain Risk Among College Football Players

Jessica L. Guadagno, MS, ATC, Gary B. Wilkerson, EdD, ATC

BACKGROUND AND PURPOSE

- Ankle ligament sprains are the most common injuries that result from participation in sports¹
- Lateral, medial, and syndesmotic ankle sprains account for approximately 13% of all football injuries²
- Studies pertaining to risk factors for ankle sprain occurrence have generated inconsistent findings³⁻⁷
- Reported risk factors include:
 - Sport/gender - Postural balance

 - Level of competition
- Antagonist strength ratio

- Shoe type

- Body mass index

Foot alignment

- History of ankle sprain
- Estimated mass moment of inertia (MOI)
- Identification of players who possess elevated risk may enhance the effectiveness of preventive interventions
- The purpose of this study was to evaluate anthropometric factors, core muscle endurance, self-rated joint function, injury history, and game exposure as predictors of ankle sprain occurrence in college football players

SUBJECTS AND PROCEDURES

- 173 NCAA Division I-FCS football players who participated in either one or both of two consecutive seasons
 - Age (19.7 1.4 years), Height (184.6 7.9 cm), Weight (102.4 19.3 kg)
- 52 participated both years; treated as separate cases for each year
- Potential predictors of ankle sprain quantified at pre-participation physical examination prior to first practice session
 - Anthropometric factors: Height, weight, estimated mass moment of inertia (MOI), foot width index (FWI)
 - Core muscle endurance: Trunk flexion hold (TFH), horizontal trunk hold (HTH), wall sit hold (WSH)
 - Self-rated joint function: Foot and Ankle Ability Measure-Sport (FAAM-S), Oswestry Disability Index (ODI)
 - History of core and/or lower extremity injury
- Electronic injury documentation system used for injury surveillance throughout both seasons
 - Ankle sprain defined as acute lateral, medial, and/or syndesmotic ligament injury
 - An injury that required evaluation by athletic trainer and modification of sport activity to any extent
- Games played (GP) and games started (GS) tracked throughout both seasons
- Data analysis procedures
 - Receiver operating characteristic (ROC) analysis used to identify high-risk versus low-risk cut-points
 - Univariable analyses assessed sensitivity (Sn), specificity (Sp), odds ratio (OR), and relative risk (RR)
 - Logistic regression analysis used to identify a set of 3-5 strongest predictors
 - Final prediction model evaluated on the basis of its Sn, Sp, OR, and RR

RESULTS

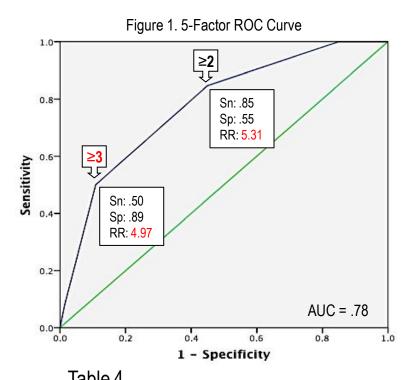
- Over the course of the two seasons, 28 ankle sprains were sustained by 26 players
- 20 lateral, 1 medial, and 7 syndesmotic
- Anthropometric factors, self-ratings of joint function, and previous lower extremity injuries were found to be stronger than core endurance performance values as predictors of ankle sprain (Table 1)
- Backward step-wise logistic regression analysis yielded a 5-factor prediction model that included:
 - Playing in ≥ 4 games
 - FAAM-S score ≤ 95
 - History of hamstring strain (HS Hx)
 - MOI (kg*m²)
 - History of low back or sacroiliac injury (LBSI Hx)
- Each of the factors retained by logistic regression analysis yielded an adjusted odds ratio greater than 2.5
- A 5-factor prediction model with ≥ 2 positive factors was found to have an OR of 6.75 and RR of 5.31
- The same prediction model with ≥ 3 positive factors was found to have an OR of 8.19 and RR of 4.97

Table 1

Predictor	Cut Pt.	Sn	Sp	OR	RR
GP	≥4 games	.85	.46	4.73	3.92
GS	≥ 1 game	.69	.66	4.37	3.47
FAAM-S	≤95	.23	.91	4.24	2.99
ВМІ	≥27.6	.81	.40	2.82	2.46
HS Hx	+	.46	.78	2.96	2.44
MOI	≥338 kg _* m ²	.73	.50	2.75	2.39
HTH	≤28 sec	.54	.70	2.73	2.31
FWI	≥.44	.60	.61	2.35	2.06
LBSI Hx	+	.15	.93	2.25	1.92
AS Hx*	+	.35	.73	1.42	1.34
ODI	≥2	.39	.63	1.08	1.06

		NO
2.31	0	22
2.06	1	59
1.92	2	50
	3	14
1.34	4	2
1.06	Total	147

*AS Hx = Ankle Sprain History


Table 2

Predictor	P-Value	Adj. OR
GP	0.003	6.26
MOI	0.014	3.59
FAAM-S	0.060	3.19
LBSI Hx	0.117	3.06
HS Hx	0.056	2.53

Table 3

Risk	Ankle Sprain			Injury
Factors	No	Yes	Total	Incidence
0	22	0	22	0.0%
1	59	4	63	6.3%
2	50	9	59	15.3%
3	14	11	25	44.0%
4	2	2	4	50.0%
Total	147	26	173	

THE UNIVERSITY of TENNESSEE 4 CHATTANOOGA

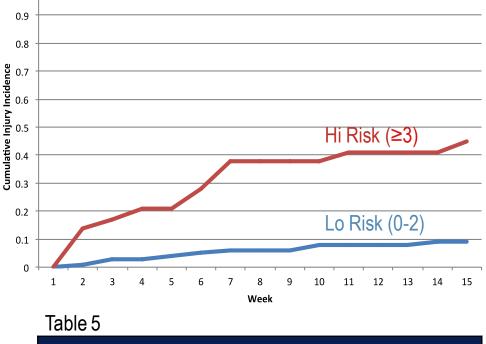
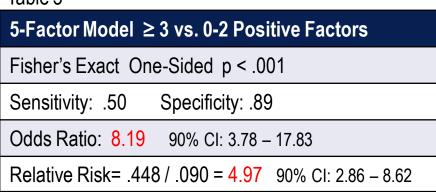



Figure 2. Cumulative Injury Incidence

Table 4			
5-Factor Model			
Injury	No Injury		
13	16		
13	131		
26	147		
	Injury 13 13		

CLINICAL RELEVANCE

- The cut-point for the 5-factor model could be chosen as either ≥ 2 or ≥ 3 positive factors
 - ≥ 2 positive factors yields greatest sensitivity, thereby missing fewer cases
 - ≥ 3 positive factors yields greater specificity, thereby facilitating concentration of time and resources on highest-risk athletes
- Contrary to previous research findings, history of ankle sprain did not prove to be one of the strongest predictors
- BMI, HTH and FWI are each strong predictors individually, but were not retained in the logistic regression analysis model
- The majority of ankle sprains occurred within the first 7 weeks of participation, but difference between groups persisted (Figure 2)
- Factors with the greatest predictive power are not directly modifiable, but may be offset to some extent by preventive measures
 - Players in the high-risk category should be prophylactically taped or braced
 - Modifiable factors such as muscle strength, neuromuscular control, and postural stability should be addressed to reduce risk

REFERENCES

- . Fallat L et al. Sprained ankle syndrome: prevalence and analysis of 639 acute injuries. *J Foot Ankle Surg.* 1998;37:280-285.
- 2. Marshall SW et al. Fall sports qualifying report: 2004-2009 academic years. Datalys Center for Sports Injury Research and Prevention: Indianapolis, IN. December 2009.
- 3. Beynnon BD et al. Predictive factors for lateral ankle sprains: a literature review. J Athl Train. 2002;37:376-380.
- 4. Waterman BR et al. Risk factors for syndesmotic and medial ankle sprain. Am J Sports Med. 2011;39:992-998.
- 5. Milgrom C et al. Risk factors for lateral ankle sprain: a prospective study among military recruits. *Foot Ankle*. 1991;12:26-30.
- . Beynnon BD et al. First-time inversion ankle ligament trauma. Am J Sports Med. 2005;33:1485-1491. McHugh MP et al. The effectiveness of balance training intervention in reducing the incidence of noncontact ankle sprains in high school football players. Am J Sports Med. 2007;35:1289-1294.