MSDA Curriculum

Learn more about our Master of Science in Data Analytics curriculum as well as any prerequisites for an MSDA that may be required.


CPSC 5000 Fundamentals of Computer Science: A foundation course presenting an introduction to computer science concepts and computer software development using a higher level language. Algorithms, flowcharting, programming, and documentation of numerical and non-numerical problems. Introduction to computer science terminology and concepts such as computer hardware and computer application areas.  Programming style using abstract data structures and top-down design. Debugging and testing of large programs. Emphasis on algorithm development. List processing. Recursion. (Stacks, trees, searching and sorting.)

MGT 5835 Quantitative Decision Analysis for Business: The course covers quantitative and statistical decision models for business decision making.  Topics covered in depth include Decision Analysis, Regression Modeling, Linear Programming, Transportation and network modeling, Forecasting, Inventory Management, Statistical Quality Control, Project Management, and Simulation modeling techniques and concepts, and their applications for managerial decision-making.  All topics will be presented using computer spreadsheet modeling approach.

Students admitted to the program who lack academic experience in certain foundation areas will be required to complete the background courses listed above, or equivalent courses, in order to gain needed competencies and prior to taking certain MSDA courses.

All background courses must be completed before more than six hours of MSDA courses are completed and must be completed before taking any course for which they are a prerequisite.

 

Core Courses
(7 total courses; 21 credit hours total required)

CPSC 5175 Programming Languages for Business Data Analytics:  This course introduces students to the fundamental computing skills via a variety of programming languages for effective data analysis. Through this course students will learn several business/statistical programming languages (Python, R).  Develop programs to read data, write functions, make informative graphics, and apply modern statistical methods to complex data sets. Prerequisite: CPSC 5000 or department head approval.

CPSC 5185 Data Visualization for Business: This course covers development of effective visualization to facilitate the understanding of complex organizational data. Topics include human perception & attention, visualization software & toolkits, visualization techniques for spatial data, geospatial data, time-oriented data, multivariate data, trees, graphs, networks, maps and text. Evaluate good design practices for visualization.  Review cutting-edge research in data visualization. Prerequisite: CPSC 5175 Programming Languages for Data Analytics.

CPSC 5195 Machine Learning for Business: Machine learning uses interdisciplinary techniques such as statistics, linear algebra, optimization, and computer science to create automated systems that can sift through large volumes of data at high speed to make predictions or decisions without human intervention. Machine learning as a field is now incredibly pervasive, with applications in business, government and nonprofit. This class will familiarize students with a broad cross-section of models and algorithms for machine learning, and prepare students for commercial application of machine learning techniques using cloud computing platforms such as Amazon Web Service and Google Cloud Platform. Prerequisite:  CPSC 5175 Programming Languages for Data Analytics.

MGT 5120 Big Data Management & Analytics: This course covers the core concepts behind big data problems, applications, and systems.   It introduces one of the most common frameworks, Hadoop, that has made big data analysis easier and more accessible. Topics include a discussion of the Big Data landscape, examples of real world big data problems, architectural components and programming models used for structured and unstructured big data analysis, HDFS file system, MapReduce, YARN, PIG, HIVE, NOSQL, and other Big Data programming techniques or platforms.  Prerequisite: MGT 5140 - Databases and Data Warehouses.

MGT 5140  Databases and Data Warehouses: The course covers both operational and analytical databases and provide knowledge integral to being successful data analyst in today’s business environment. The fundamental concepts related to operational databases include conceptual design (entity relationship diagram), logical design (normalization) and physical schema. The analytical data warehouse topics include star schema design for data warehouses and data marts.  Extract, transform, and load (ETL) is also covered as a technique that ties operational data and data warehouses. The course discusses several database management systems and uses SQL to create and query databases and data warehouses. Prerequisite: CPSC 5000 or department head approval.

MGT 5190: Data Mining and Analytics:  This course focuses on hands-on learning of how to use analytical techniques and data mining algorithms to support business decision making.  It focuses on the essential exploratory and visualization techniques to maximize insight into a dataset, uncover the underlying structure and determine optimal factor setting. It incorporates extensive use of data, quantitative analysis, statistical and predictive models, and fact-based management to drive decisions and actions. This class uses a real-life data project.  Prerequisite: MGT 5835 Quantitative Decision Analysis for Business and CPSC 5000 Fundamentals of Computer Science or department head approval.

MGT 5200: Advanced Data Analytics: This course covers advanced topics related to data analytics.  It focuses on practical applications of advanced data mining and machine learning algorithms. Operationalization of analytics in organizations.  Major part of the course will focus on analysis of textual data from web, blogs and social media.  Natural language processing and text mining algorithms.  The focus of this course is hands-on learning of how to use statistical and algorithm-based techniques to solve business problems. The course uses real-life data project.  Prerequisite: MGT 5190: Data Mining and Analytics.

(3 to 6 credit hours):

Students can choose to do either three credits or six credits of Thesis/Project or Internship/Practicum.

  • For the computer science track, students who choose to do a thesis must complete a six-credit, substantial research project under the guidance of a faculty member.  Or, computer science track students can choose to take four elective courses and do a three-credit project.
  • For the business track, students can choose to do an internship with a company for either three or six credits.  The internship should not be from the job they are performing with their current employer (if applicable).  A faculty member must approve the internship.  Or business track students may choose to do a practicum project where a group of students work on a substantial, semester-long project with a company under the guidance of a faculty member with set deliverables.  This project can be for three or six credits.

 

CPSC 5900 Project

CPSC9999r  Thesis (6 credits) Student who are interested in research and may be looking to join a Ph. D. program can elect to do a thesis under a close supervision of faculty member(s).

MGT 5920r (3 Credit) Internship (Can be repeated up to two times): Students can do a one or two semester internship with a company to gain real world experience in data analytics.  The internship should represent significant work and will be jointly supervised by a faculty member from UTC and a company representative.

MGT 5940r (3 credit) Practicum Project (Can be repeated up to two times): The student can work on a significant practicum project provided by a company to gain real life experience.  The project will be closely supervised by a UTC faculty member and should represent significant work of value to the organization.  A group of two to three students may be involved in a large project.

 

Elective Courses

Students choose either a Business Track or a Computer Science Track.

Elective Course Options:

Students choose 3 or 4 courses from following depending on internship or practicum project selected

ACC 5855 Accounting for Managers:  The purpose of this course is to provide students with a thorough exposure to the basic elements of financial and managerial accounting from a manager’s perspective.  Emphasis is placed on the application of accounting information both from an external user’s perspective and for internal decision making. Contemporary topics that might affect the use of accounting information are surveyed, including in depth discussion of current events in business and financial news.  The course draws upon the collective business experiences of the participants during classroom discussions that demonstrate the application of key concepts.

ECON 5015 Economics for Managers:  Economics for Managers uses real-­world issues and examples to illustrate how economic principles impact business decisions. Emphases on agency and contract theory, managerial behavioral economics, game theory, and pricing are especially valuable to decision making by managers. In this course, cases use actual data to illustrate the use of basic economic models to solve managerial and economic problems.

FIN 5820 Financial Management:  The goal of this course is to acquaint students with the primary concepts and techniques of financial analysis. The course will build upon the skills obtained in accounting and economics and use those skills for making decisions regarding a firm’s use of capital toward the goal of maximizing the value of the firm. It is assumed that all students are familiar with financial statements and basic statistical and economic principles. The first part of the course will develop the tools used in modern financial analysis, including financial statement analysis and valuation techniques. Latter portions will apply these tools to decision-making for long-term (capital budgeting and cost of capital) financial management for both large and small firms.

MGT 5180 Prescriptive Analytics:  This course provides students with a comprehensive overview of the theory and practice of prescriptive analytics which involve large-scale optimization models and provide operational benefits to organizations. Prescriptive analytics can be used to identify the best possible action to take given resource constraints and organizational objectives. The techniques include mathematical programming, simulation, and large-scale optimizations. The course also explores practical challenges encountered in implementing real-life application models such as planning, scheduling, resource allocation, supply chain management, logistics, and marketing. Students will learn the fundamental ideas behind optimization technology, utilize this knowledge to build solvers and transform a given optimization problem into actionable business intelligence.  This course complements descriptive and predictive analytics and connects data driven approaches with their optimum decision-making counterpart.

MGT 5250 Organizational Behavior and Leadership: An examination of the theoretical and research foundations that explain behavior within the context of organizations. The focus will be on how organizational behavior theory is translated into practice such that students will acquire the knowledge and skills necessary to become an effective manager.


MGT 5860 Marketing Management: The goal of this course is to provide a decision-oriented overview of marketing management. This course focuses on the management challenge of designing and implementing marketing strategies that maximize customer satisfaction and firm profitability.

Choose 3 courses if thesis option is to be selected. Otherwise take four courses.

CPSC 5010 - Structuring Programs and Data:  A foundation course presenting the material covered in Data Structures (3200) and Software Design and Development (2100) at an accelerated rate.

CPSC 5020 - Computing Systems:  A foundation course presenting the material covered in Digital Logic and Introduction to Computer Hardware (3700) and Introduction to Operating Systems (2800) at an accelerated rate.

CPSC 5130 - Cloud Computing:  Cover advanced web technologies, distributed computing models and technologies, Infrastructure-as-a-service (IaaS), Software as a Service (SaaS), Platform-as-a-service (PaaS), virtualization, parallelization, security/privacy, and current challenges.

CPSC 5160 - Structured Data Exchange: Survey of XML and the applications of XML. Coverage includes the XML document structure, Document Type Definitions, Extensible Stylesheet Language, how DTDs and XML schemas can be used to frame data and connect XML documents and the information they access, and data connection objects. The languages and implementation tools may vary to meet current development trends.

CPSC 5610 - Advanced Information Security Management:  The study of management in information security, including planning, policy and protection. Areas covered include advanced topics in planning for security, information security policy, developing security programs, access control, cryptography, risk management, information security administration and incident handling and response. Both commercial practices and federal government policies for classified information will be explored.