Section Menu
This is a picture of Roger Nichols

     Contact Information:

              Mathematics Department
              The University of Tennessee at Chattanooga
              415 EMCS Building, Dept. 6956
              615 McCallie Ave
              Chattanooga, TN 37403, USA

 

              E-mail: roger-nichols "at" utc.edu

              Office:  EMCS 418A
              Phone:  (423) 425-4036
              Fax:      (423) 425-4586

 


 About Me:

I am an assistant professor in the Department of Mathematics at The University of Tennessee at Chattanooga.

A full CV is available here.


 Research Interests:

Differential equations, spectral theory of differential operators, perturbation theory, functional analysis, semigroups, and approximation theory.


 Publications:

    1. Simplicity of eigenvalues in Anderson-type models; with G. Stolz and S. Naboko. Ark. Mat. 51, 157-183 (2013).
    2. Spectral properties of discrete random displacement models; with G. Stolz.  J. Spectr. Theory 1, No. 2, 123-153 (2011).
    3. Weak convergence of spectral shift functions for one-dimensional Schrodinger operators; with F. Gesztesy.  Math. Nachr. 285, No. 14-15, 1799-1838 (2012).
    4. An abstract approach to weak convergence of spectral shift functions and applications to multi-dimensional Schrodinger operators; with F. Gesztesy. J. Spectr. Theory 2, No. 3, 225-266 (2012).
    5. Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials; with J. Eckhardt, F. Gesztesy, and G. Teschl.  Opuscula Math. 33, No. 3, 467-563 (2013).
    6. Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions; with F. Gesztesy and M. Mitrea.  J. Anal. Math. 122, 229-287 (2014).
    7. Inverse spectral theory for Sturm-Liouville operators with distributional potentials; with  J. Eckhardt, F. Gesztesy, and G. Teschl.  J. London Math. Soc. (2) 88, 801-828 (2013).
    8. On square root domains for non-self-adjoint Sturm--Liouville operators; with F. Gesztesy and S. Hofmann.  Methods Funct. Anal. Topology, 19, No. 3, 227-259 (2013).
    9. Boundary data maps and Krein's resolvent formula for Sturm-Liouville operators on a finite interval; with S. Clark, F. Gesztesy, and M. Zinchenko.  Oper. Matrices 8, No. 1, 1-71 (2014).
    10. Supersymmetry and Schrodinger-type operators with distributional matrix-valued potentials; with J. Eckhardt, F. Gesztesy, and G. Teschl.  To appear in Journal of Spectral Theory.
    11. A Jost-Pais-type reduction of (modified) Fredholm determinants for semi-separable operators in infinite dimensions; with F. Gesztesy. To appear in Recent Advances in Schur Analysis and Stochastic Processes - A Collection of Papers Dedicated to Lev Sakhnovich, D. Alpay and B. Kirstein (eds.), Operator Theory: Advances and Applications, Birkhauser, Basel.
    12. Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions II; with F. Gesztesy, M. Mitrea, and E. M. Ouhabaz.  To appear in Proceedings of the American Mathematical Society.
    13. Inverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentials; with J. Eckhardt, F. Gesztesy, A. Sakhnovich, and G. Teschl.  To appear in Differential Integral Equations.  [14 TeX pages].
    14. On factorizations of analytic operator-valued functions and eigenvalue multiplicity questions; with F. Gesztesy and H. Holden.  To appear in Integral Eq. and Operator Th.  [31 TeX pages].

 Preprints:

  1. On stability of square root domains for non-self-adjoint operators under additive perturbations; with F. Gesztesy and S. Hofmann.  Submitted.  [59 TeX pages].
  2. Principal solutions revisited; with S. Clark and F. Gesztesy.  Submitted.  [25 TeX pages].
  3. Stability of square root domains associated with elliptic systems of PDEs on nonsmooth domains; with F. Gesztesy and S. Hofmann.  Submitted.  [13 TeX pages].*
  4. On a problem in eigenvalue perturbation theory; with F. Gesztesy and S. Naboko.  Submitted.  [8 TeX pages].

 

        (Note:  With the exception of those marked with an asterisk, all preprints are available on arXiv.org.)


 

**If you spot a typo or other error on this page, please report it here.
©