Reacting Plume Inversion on Urban Geometries Through Gradient Based Design Methodologies

A Dissertation Presented for the Doctor of Philosophy in Computational Engineering, The University of Tennessee at Chattanooga

Nicholas G. Currier, August 2014

Abstract:
An increased focus on domestic security in recent years has brought attention to several important application areas where computational fluid dynamics (CFD) has the ability to make a significant impact. In particular, disaster mitigation and post-event forensic activities are of interest. This work investigates a procedure built on gradient based design methods to allow for the solution of the so-called inverse chemistry problem in urban environments. The inverse chemistry problem consists of computing a release location based on the sensing of chemical byproducts of the release and the ability to compute an accurate flow field on the geometry of interest. In this study, Washington DC is simulated under conditions of a hazardous plume. A CFD solver is implemented which allows for the solution of the preconditioned finite-rate Navier-Stokes equations as well as the in situ computation of design gradients.

Nicholas G. Currier Doctoral Dissertation

Click here to access a copy of Nick's dissertation.