Validation of Interpolative Interfaces for Rotorcraft Applications

A Thesis Presented for the Master of Science in Computational Engineering Degree, The University of Tennessee at Chattanooga

Adam Cofer, December 2013

The study uses computational methods to simulate fluid flow on the NASA ROBIN helicopter model and on a simplified rotor geometry previously tested at Mississippi State. The ROBIN model and the rotor are run using an unstructured grid. Results from the Tenasi flow solver are compared against both simulated and wind tunnel data. Tenasi is an unstructured, Reynolds Averaged Navier-Stokes (RANS) solver developed at the SimCenter: National Center for Computational Engineering, located at the University of Tennessee at Chattanooga. Steady-state results for the isolated ROBIN fuselage and unsteady results for both fuselage and rotor systems are computed. In the unsteady case, relative grid motion of both the rotor disk relative to the fuselage and the cyclic pitching motion of each blade as the rotor turns must be simulated. Thus, each moving component is meshed in its own subdomain, and a nonmatching and sliding interface method is used to compute fluxes across the subdomain boundaries. Testing of the implementation of this method in Tenasi is the primary purpose of the study.

Adam Cofer Masters Thesis

Click here to access a full copy of Adam's thesis.